

#### UNIVERSIDAD ESAN

# FACULTAD DE INGENIERÍA

# INGENIERÍA INDUSTRIAL Y COMERCIAL

# APLICACIÓN DE LA METODOLOGÍA SIX SIGMA PARA INCREMENTAR LA PRODUCTIVIDAD EN EL ÁREA DE PRODUCCIÓN DE GRUPO PACIFIC OIL S.A.C., LIMA, 2022

Tesis para optar por el Título Profesional de Ingeniera Industrial y Comercial que presenta

> Autora: Diana Andrea Cabezudo Huaraca

> > Asesora:

Mg. Mónica Patricia Chávez Rojas (ORCID: 0000-0001-6381-3322)

Lima, julio de 2023

# Impresión de informe de similitud

# REVISION TESIS DIANA CABEZUDO HUARACA

| 5%                         | 6%                            | 4%             | 3%                         |   |
|----------------------------|-------------------------------|----------------|----------------------------|---|
| INDICE DE SIMILITUD        | FUENTES DE INTERNET           | PUBLICACIONES  | TRABAJOS DEL<br>ESTUDIANTE |   |
| FUENTES PRIMARIAS          |                               |                |                            |   |
| 1 reposito                 | orio.usil.edu.pe              |                |                            | 3 |
| 2 Submitt<br>Trabajo del e | ed to Universida<br>studiante | d Cesar Vallej | jo                         | 1 |
| 3 theibfr.c                |                               |                |                            | 1 |
| 4 reposito                 | prio.upla.edu.pe              |                |                            | 1 |
| 5 reposito                 | orio.usmp.edu.pe              |                |                            | 1 |

Excluir citas Activo
Excluir bibliografía Activo

Excluir coincidencias < 1%

# APLICACIÓN DE LA METODOLOGÍA SIX SIGMA PARA INCREMENTAR LA PRODUCTIVIDAD EN EL ÁREA DE PRODUCCIÓN DE GRUPO PACIFIC OIL S.A.C., LIMA, 2022

ha sido aprobada.

Marks Arturo Calderón Niquín (Jurado Presidente)

Willy Hugo Calsina Miramira (Jurado)

Jorge Luis Rojas Rojas (Jurado)

Universidad ESAN

#### **DEDICATORIA**

Dedico este trabajo a mis queridos padres, Luisa y Pedro, por su apoyo incondicional. A mi hermana Valeria, por ser la razón de sentirme tan orgullosa de culminar mi meta; y a mi abuela Zenaida, que desde el cielo me ilumina.

#### **AGRADECIMIENTOS**

En primer lugar, a Dios, quien me ha guiado en todo momento. A la universidad ESAN, por todos los conocimientos otorgados; y a mi asesora, Mg. Mónica Patricia Chávez Rojas, por guiarme por el camino correcto de la investigación.

## **ÍNDICE GENERAL**

| DEDICATORIA                             | ii   |
|-----------------------------------------|------|
| AGRADECIMIENTOS                         | iii  |
| ÍNDICE GENERAL                          | iv   |
| ÍNDICE DE TABLAS                        | viii |
| ÍNDICE DE GRÁFICOS                      | x    |
| ÍNDICE DE ANEXOS                        | xi   |
| RESUMEN                                 | xii  |
| ABSTRACT                                | xiii |
| INTRODUCCIÓN                            | 1    |
| CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA  | 3    |
| Descripción de la realidad problemática | 3    |
| Formulación del problema                | 9    |
| Problema general                        | 9    |
| Problemas específicos                   | 9    |
| Objetivos de la investigación           | 9    |
| Objetivo general                        | 9    |
| Objetivos específicos                   | 9    |
| Justificación de la investigación       | 9    |
| Teórica                                 | 9    |
| Práctica                                | 10   |
| Metodológica                            | 10   |
| Delimitación del estudio                | 10   |
| Delimitación geográfica                 | 10   |
| Delimitación temporal                   | 10   |
| CAPÍTULO II: MARCO TEÓRICO              | 12   |
| Antecedentes de la investigación        | 12   |
| Antecedentes nacionales                 | 12   |

|    | Antecedentes internacionales                | 15 |
|----|---------------------------------------------|----|
| Е  | Bases teóricas                              | 18 |
|    | Six Sigma                                   | 18 |
|    | Desarrollo de Six Sigma                     | 19 |
|    | Fases del Six Sigma                         | 19 |
|    | Definir                                     | 20 |
|    | Medir                                       | 20 |
|    | Analizar                                    | 21 |
|    | Mejorar                                     | 21 |
|    | Controlar                                   | 21 |
|    | Herramientas utilizadas en Six Sigma        | 22 |
|    | Productividad                               | 23 |
|    | Reprocesos                                  | 23 |
|    | Eficiencia                                  | 24 |
|    | Eficacia                                    | 24 |
| N  | Marco conceptual                            | 24 |
| H  | lipótesis                                   | 27 |
|    | Hipótesis general                           | 27 |
|    | Hipótesis específicas                       | 27 |
|    | Variables e indicadores                     | 28 |
| CA | PÍTULO III: METODOLOGÍA DE LA INVESTIGACIÓN | 29 |
|    | Diseño de Investigación                     | 29 |
|    | Diseño                                      | 29 |
|    | Tipo – Nivel                                | 29 |
|    | Enfoque                                     | 30 |
| F  | Población y muestra                         | 30 |
| li | nstrumentos de Medida                       | 31 |
| C  | Operacionalización de variables             | 31 |
| Т  | écnicas de Recolección de datos             | 33 |

| Técnicas para el Procesamiento y Análisis de la Información | 33 |
|-------------------------------------------------------------|----|
| Cronograma de actividades y presupuesto                     | 35 |
| CAPÍTULO IV: DESARROLLO DEL EXPERIMENTO                     | 37 |
| Plan Estratégico de la empresa                              | 37 |
| Misión                                                      | 37 |
| Visión                                                      | 37 |
| Objetivos estratégicos                                      | 37 |
| Análisis FODA                                               | 38 |
| Matriz EFI                                                  | 40 |
| Matriz EFE                                                  | 41 |
| Metodología DMAIC                                           | 42 |
| Definir                                                     | 42 |
| Medir                                                       | 55 |
| Analizar                                                    | 61 |
| Mejorar                                                     | 64 |
| Controlar                                                   | 78 |
| CAPÍTULO V: ANÁLISIS Y DISCUSIÓN DE RESULTADOS              | 80 |
| Análisis de resultados                                      | 80 |
| Simulación en Arena                                         | 80 |
| Evaluación de los tiempos de trabajo                        | 84 |
| Validación de hipótesis de la investigación                 | 85 |
| Prueba de hipótesis específica 1: Reprocesos de producción  | 85 |
| Prueba de hipótesis específica 2: Eficiencia                | 86 |
| Prueba de hipótesis específica 3: Eficacia                  | 87 |
| Prueba de hipótesis general: Productividad                  | 88 |
| Evaluación económico-financiera                             | 89 |
| Discusiones                                                 | 95 |
| CAPÍTULO VI: CONCLUSIONES Y RECOMENDACIONES                 | 97 |
| Conclusiones                                                | 97 |
|                                                             |    |

| Recomendaciones            | 98  |
|----------------------------|-----|
| Referencias Bibliográficas | 100 |
| Anexos                     | 106 |

## **ÍNDICE DE TABLAS**

| Tabla 1.   | Presentaciones y niveles de producción de aceites fabricados en la empresa | 5        |
|------------|----------------------------------------------------------------------------|----------|
| Tabla 2.   | Matriz de operacionalización de variables                                  | 32       |
| Tabla 3.   | Presupuesto de investigación                                               | 36       |
| Tabla 4. E | Estrategias FODA Grupo Pacific Oil S.A.C                                   | 38       |
| Tabla 5.   | Matriz EFI - Evaluación de Factores Internos                               | 40       |
| Tabla 6.   | Matriz EFE - Evaluación de Factores Externos                               | 41       |
| Tabla 7.   | Productos y presentaciones                                                 | 43       |
| Tabla 8.   | Productividad mensual en el área de Producción                             | 48       |
| Tabla 9.   | Plan de comunicación                                                       | 54       |
| Tabla 10.  | Matriz AMFE                                                                | 58       |
| Tabla 11.  | Prueba de correlación: Neutralizado y Tiempo total de producción           | 62       |
| Tabla 12.  | Correlaciones en parejas de Pearson - Secado y Tiempo total de producción  |          |
|            | 62                                                                         | <u> </u> |
| Tabla 13.  | Correlaciones en parejas de Pearson - Envasado y Tiempo total de           |          |
| producció  | n                                                                          | 63       |
| Tabla 14.  | Resultados etapa Analizar                                                  | 64       |
| Tabla 15.  | Medidas para la etapa de neutralizado                                      | 65       |
| Tabla 16.  | Medidas para la etapa de secado                                            | 66       |
| Tabla 17.  | Medidas para la etapa de envasado                                          | 67       |
| Tabla 18.  | Cronograma de capacitaciones                                               | 71       |
| Tabla 19.  | Plan de mantenimiento                                                      | 72       |
| Tabla 20.  | Mejoras esperadas                                                          | 78       |
| Tabla 21.  | Consideraciones adoptadas para la simulación                               | 81       |
| Tabla 22.  | Estadísticos descriptivos del Tiempo total final (minutos)                 | 83       |
| Tabla 23.  | Estadísticos descriptivos de los tiempos totales                           | 84       |
| Tabla 24.  | Valor T y valor p de la prueba de hipótesis                                | 84       |
| Tabla 25.  | Estadísticos descriptivos: Reprocesos                                      | 85       |
| Tabla 26.  | Valor T y valor p de la prueba de hipótesis: Reprocesos                    | 85       |
| Tabla 27.  | Estadísticos descriptivos: Eficiencia                                      | 86       |
| Tabla 28.  | Valor T y valor p de la prueba de hipótesis: Eficiencia                    | 86       |
| Tabla 29.  | Estadísticos descriptivos: Eficacia                                        | 87       |
| Tabla 30.  | Valor T y valor p de la prueba de hipótesis: Eficacia                      | 87       |
| Tabla 31.  | Estadísticos descriptivos: Productividad                                   | 88       |
| Tabla 32.  | Valor T y valor p de la prueba de hipótesis: Productividad                 | 88       |
| Tabla 33.  | Ahorros generados por la implementación                                    | 89       |

| Tabla 34. | Costo de capacitaciones                         | .89 |
|-----------|-------------------------------------------------|-----|
| Tabla 35. | Costo de mantenimiento de maquinarias y equipos | .90 |
| Tabla 36. | Flujo de caja                                   | .92 |
| Tabla 37. | Periodo de recuperación de la inversión         | .94 |

# ÍNDICE DE GRÁFICOS

| Figura 1. Proceso de producción del aceite de soya           | 5  |
|--------------------------------------------------------------|----|
| Figura 2. Porcentaje de reprocesos mensuales 2022            | 6  |
| Figura 3. Diagrama de Pareto: Baja productividad             | 8  |
| Figura 4. Herramientas utilizadas en Six Sigma               | 22 |
| Figura 5. Cronograma de investigación                        | 35 |
| Figura 6. Ubicación de la empresa                            | 44 |
| Figura 7. Plano de la planta de producción                   | 45 |
| Figura 8. Organigrama                                        | 46 |
| Figura 9. Porcentaje de reprocesos mensuales 2022            | 48 |
| Figura 10. Evolución de la productividad 2022                | 49 |
| Figura 11. Voz del cliente                                   | 50 |
| Figura 12. Diagrama de bloques                               | 51 |
| Figura 13. Diagrama SIPOC                                    | 53 |
| Figura 14. Diagrama de Ishikawa: Baja productividad          | 55 |
| Figura 15. Diagrama de Pareto: Baja productividad            | 56 |
| Figura 16. Nivel Sigma inicial                               | 60 |
| Figura 17. Taza y platos de las maquinarias del Neutralizado | 73 |
| Figura 18. Mantenimiento maquinarias del Blanqueado          | 75 |
| Figura 19. Mantenimiento de Deodorizador                     | 77 |
| Figura 20. Control estadístico de procesos                   | 79 |
| Figura 21. Simulación del proceso                            | 82 |
| Figura 22. Nivel Sigma post meiora.                          | 83 |

## **ÍNDICE DE ANEXOS**

| Anexo 1. | Matriz de consistencia                                              | 106 |
|----------|---------------------------------------------------------------------|-----|
| Anexo 2. | Formato de capacitaciones C-01                                      | 108 |
| Anexo 3. | Tiempos totales del proceso obtenidos de la simulación (en minutos) | 109 |
| Anexo 4. | Encuesta de satisfacción                                            | 115 |

#### RESUMEN

Esta investigación se llevó a cabo con la finalidad de aplicar la metodología Six Sigma en el área de Producción de Grupo Pacific Oil S.A.C. para mejorar la productividad, disminuir los reprocesos y aumentar la eficiencia y la eficacia en la fabricación de aceites. La variable independiente de la investigación fue Six Sigma, mientras que la variable dependiente fue la Productividad. La muestra fue seleccionada aleatoriamente y estuvo conformada por 231 órdenes de trabajo. Las técnicas de recolección de información fueron la entrevista y el análisis documental; los instrumentos de recopilación de datos fueron la guía de entrevista y la ficha de registro de datos. Los resultados obtenidos en la presente investigación permitieron comprobar que la aplicación de la metodología Six Sigma incrementó significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C. Asimismo, se logró demostrar que los reprocesos disminuyeron significativamente; que la eficiencia se incrementó significativamente; y que la eficacia se incrementó también. De forma complementaria, se demostró que todas las mejoras realizadas fueron económicamente viables, puesto que el VAN es igual a S/.11,667.81, la TIR es igual a 6.39%, el PRD es igual a 7.49 meses y el ratio B/C es igual a 1.26.

Palabras clave: Six Sigma, productividad, análisis documental, reprocesos, eficiencia, eficacia, VAN, TIR, PRD, ratio B/C.

#### **ABSTRACT**

This research was carried out with the purpose of applying the Six Sigma methodology in the Production area of Grupo Pacific Oil S.A.C. to improve productivity, reduce reprocessing and increase efficiency and effectiveness in oil manufacturing. The independent variable of the research was Six Sigma, while the dependent variable was Productivity. The sample was selected randomly and consisted of 231 work orders. The data collection techniques were interviews and documentary analysis; The data collection instruments were the interview guide and the data recording sheet. The results obtained in this research allowed us to verify that the application of the Six Sigma methodology significantly increased productivity in the Production area of Grupo Pacific Oil S.A.C. Likewise, it was demonstrated that reprocessing decreased significantly; that efficiency increased significantly; and that the effectiveness increased as well. In addition, it was demonstrated that all the improvements made were economically viable, since the NPV is equal to S/.11,667.81, the IRR is equal to 6.39%, the PRD is equal to 7.49 months and the B/C ratio is equal. to 1.26.

**Keywords:** Six Sigma, productivity, documentary analysis, reprocessing, efficiency, effectiveness, VAN, IRR, PRD, B/C ratio.

#### INTRODUCCIÓN

La mejora de la productividad es un desafío constante para las organizaciones en un entorno empresarial cada vez más competitivo. Según Prokopenko, "la productividad es la relación entre la producción obtenida por un sistema de producción o servicios y los recursos utilizados para obtenerla" (1998, p. 65). De aquí radica su importancia, pues la productividad es un indicador que muestra si el proceso de producción de un determinado bien está siendo eficiente y eficaz.

En el contexto mencionado previamente, Six Sigma se ha destacado como una metodología efectiva para identificar y eliminar defectos en los procesos, con el objetivo de mejorar la calidad y la eficiencia operativa. Gupta et al. (2017) definen que la metodología Six Sigma implica una serie de etapas estructuradas para analizar, mejorar y controlar procesos, apuntando a la optimización y la eficiencia. Por este motivo, la metodología Six Sigma ha sido aplicada en diferentes tipos de empresas a nivel internacional, generando mejoras significativas para todas las organizaciones.

El presente trabajo de investigación tuvo como objetivo aplicar la metodología Six Sigma en la empresa Grupo Pacific Oil S.A.C. para incrementar los niveles de productividad en el área de Producción. Asimismo, presentó como objetivos específicos la disminución de los reprocesos, el incremento de la eficiencia y el aumento de la eficacia de producción, gracias a la implementación de esta metodología. De este modo, esta investigación presentó una justificación práctica, una justificación teórica y una metodológica.

El desarrollo de este trabajo de tesis se realizó en base a seis capítulos. El capítulo I desarrolló el planteamiento del problema, a través de la construcción de la realidad problemática, la definición de los problemas y objetivos, la justificación de la investigación y la delimitación del estudio. El capítulo II estructuró el Marco teórico, en el que se analizaron los antecedentes de la investigación y se desarrollaron las bases teóricas sobre las variables estudiadas; asimismo, se definieron las variables de investigación y las hipótesis del estudio. En el capítulo III, se definió la metodología de la investigación, pues

se estableció el diseño de investigación, la composición de la población y de la muestra, la determinación de los instrumentos de medidas, las técnicas de recolección de datos y las técnicas para su procesamiento. En el capítulo IV, se definió el Plan estratégico de la empresa y se desarrolló la metodología DMAIC. En el capítulo V, se realizó el análisis de los resultados a través de la simulación del proceso mejorado, se realizaron las pruebas de hipótesis correspondientes, se realizó la evaluación económica financiera y se desarrollaron las discusiones del estudio. En el capítulo VI, se determinaron las conclusiones del estudio, así como las recomendaciones para investigaciones posteriores. Por último, se detalló la lista de referencias bibliográficas y los anexos usados durante la investigación.

#### **CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA**

#### Descripción de la realidad problemática

A nivel mundial, la preocupación por ser cada vez más productivos en los diferentes sectores industriales se ha incrementado, debido a la mayor competencia y al aumento de los estándares de calidad requeridos por el mercado. En este sentido, se han desarrollado numerosas metodologías ingenieriles abocadas en la mejora continua de los procesos y en la optimización de la productividad y de la rentabilidad. Según Diaz et al., "la productividad es la medida del rendimiento de un sistema y se calcula dividiendo la producción obtenida por los recursos utilizados" (2018, p. 55). Por lo tanto, para poder optimizar este factor, es necesario ahondar en los procesos productivos y mejorar la calidad de los mismos.

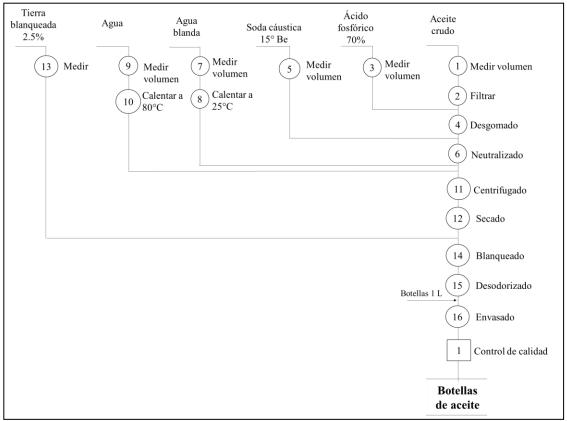
Una de las metodologías más reconocidas a nivel internacional es Six Sigma, la cual, de acuerdo con Furterer, "es una filosofía y metodología de calidad que nos ayudará a mejorar la calidad de mercancía, procesos y servicios, enfocándose en la disminución de la variación estándar" (2015, p. 23). De acuerdo con esto, Six Sigma es una metodología que permite eliminar los errores en los procesos, disminuir la variabilidad de los mismos e incrementar su productividad.

A nivel internacional, se han llevado a cabo distintos tipos de investigaciones relacionadas con la aplicación de la metodología Six Sigma. En México, García et al. (2022) aplicaron el método DMAIC Six Sigma para incrementar la productividad de la industria del sombrero en Tehuacán. En este trabajo de investigación, se aplicaron distintas herramientas, como los diagramas de Pareto, las capacidades del proceso, el análisis R&R, los gráficos de probabilidad, los diagramas de causa-efecto y los ANOVA, logrando demostrar los resultados iniciales desfavorables del sector y determinar la correcta metodología de trabajo para la aplicación de Six Sigma en este tipo de empresas. A nive l regional, Arias et al. (2008) aplicaron Six Sigma en empresas de una industria metalmecánica de Colombia, encontrando, inicialmente, demasiadas fallas en la fabricación de pistones mecánicos. En esta investigación, se aplicaron herramientas como

histogramas, las capacidades del proceso, los diagramas de Ishikawa y Pareto, entre otros, obteniéndose mejoras significativas, que lograron incrementar la capacidad del proceso desde un valor inicial de 0.689 hasta un valor final de 1.335. En el Perú, Guimarey et al. (2021) aplicaron la metodología Six Sigma para optimizar la productividad en una empresa del rubro textil. En este trabajo, se aplicaron herramientas como el diagrama de bloques, la matriz SIPOC, el diagrama de Ishikawa, el diagrama de Pareto, la capacidad del proceso, la matriz AMFE y la hoja de verificación. Gracias a ello, se pudo determinar una mejora significativa en la productividad, la cual aumentó desde un valor inicial de 452 unidades producidas/trabajador hasta un valor final de 509 unidades producidas/trabajador, lo que representa un incremento significativo del 12.61%.

La empresa Grupo Pacific Oil S.A.C. es una organización con más de cinco años en el mercado dedicada a la fabricación de aceites de soya, que se encuentra ubicada en Huachipa, Lima, Perú. En años recientes, ha logrado posicionarse como una empresa productora importante en el mercado de aceites, estando dentro de las 20 principales organizaciones del sector. Esta empresa posee una producción anual de 720 toneladas de aceite de soya y una producción semanal de 15 toneladas. Con relación a la facturación anual de la empresa, esta supera los 23 millones de soles y posee un margen de rentabilidad neta superior al 3%. Actualmente, la empresa cuenta con 21 trabajadores, quienes laboran en las distintas áreas de la organización.

La empresa fabrica distintas presentaciones de aceites, en función a las demandas del mercado nacional. A continuación, se presentan los porcentajes de la producción total que corresponden a cada línea de producción.


**Tabla 1.**Presentaciones y niveles de producción de aceites fabricados en la empresa

| Presentación              | % de producción |
|---------------------------|-----------------|
| Presentación de 200ml     | 12%             |
| Presentación de 500ml     | 14%             |
| Presentación de 900ml     | 7%              |
| Presentación de 1 litro   | 29%             |
| Presentación de 5 litros  | 17%             |
| Presentación de 18 litros | 13%             |
| Presentación de 20 litros | 8%              |
| Total                     | 100%            |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De acuerdo con la tabla 1, la presentación de 1 litro de aceite de soya es la que más se fabrica en la empresa, siendo la línea más representativa y la que será evaluada en la presente investigación. El proceso de producción de estos aceites se detalla en el Diagrama de Operaciones del Proceso (DOP) de la figura 1.

**Figura 1.**DOP del proceso de producción del aceite de soya



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

El proceso de producción trabajado en la empresa inicia con los lotes de aceite crudo que llegan a la organización. Este aceite sigue un tratamiento para refinarlo, constituido por distintas etapas como el filtrado, el desgomado, el centrifugado, la

neutralización, el blanqueado y el desodorizado, para luego ser almacenado hasta que sea envasado en las botellas de un litro. En el año 2022, se han identificado elevados niveles de reprocesos, los cuales parecen estar relacionados con las etapas de refinado y envasado, principalmente. Los porcentajes de reprocesos mensuales hallados en el año 2022 se detallan en la figura 2.

Porcentaje de reprocesos mensuales 2022 Nivel de reprocesos 18.00% 17.30% 17.50% 16.70% 17.00% 16.20% 16.50% 16.10% 16.00% 15.80% 15.80% 16.00% 15.50% 15.40% 15.50% 15.10% 14.90% 15.00% 14.60% 14.50% 14.00% 13.50% 13.00% MES

**Figura 2.**Porcentaie de reprocesos mensuales 2022

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De acuerdo con la figura 2, los niveles de reprocesos que se han obtenido mensualmente han fluctuado entre un 14.60% y un 17.30% del total de procesos de fabricación. Estos altos niveles de reprocesos han generado una disminución significativa de la productividad y puede influir, en el mediano y largo plazo, en la rentabilidad de la empresa. Los niveles de productividad mensuales oscilan entre un valor mínimo de 70.07% y un valor máximo de 72.14% entre los meses de enero a diciembre del 2022. Esto representa un problema para la empresa, puesto que los objetivos organizacionalesaspiran a alcanzar un nivel mínimo de productividad superior al 85%.

Luego de evaluar las posibles causas de los altos niveles de reprocesos y de la baja productividad de la empresa, se pudieron identificar las posibles causas que originan estos inconvenientes. De este modo, la baja productividad está relacionada con factores como la

falta de capacitación de los operarios o la poca experiencia con la que cuentan cuando inician sus labores en Grupo Pacific Oil S.A.C. Asimismo, en relación a los materiales utilizados en la producción, algunos insumos provienen de proveedores distintos, por lo que la calidad no siempre es estándar; por otro lado, el manejo inadecuado de los lotes de insumos es otro inconveniente, pues no se lleva un inventario adecuado que permita utilizar primero los inventarios más antiguos. Con respecto a las mediciones trabajadas, no se cuenta con indicadores de eficiencia y eficacia, y no se realizan lecturas de calidad adecuadas en el laboratorio. Con relación al ambiente de trabajo, el espacio es insuficiente para realizar de forma óptima el trabajo y, en algunas ocasiones, se observa un ambiente de trabajo desordenado. Con respecto a los métodos de producción, el almacenado prolongado del aceite refinado no siempre es adecuado, pues podrían ocurrir escenarios de contaminación que generen reprocesos; asimismo, el deficiente proceso de control de calidad del envasado genera que, en ocasiones, no se detecten adecuadamente los envases o tapas defectuosas, lo que ocasiona una mayor tasa de reprocesos. Finalmente, con respecto a las máquinas utilizadas, la falta de cumplimiento del programa semestral de mantenimiento genera, en ocasiones, problemas de rendimiento; además, la falta de revisión frecuente de los equipos dificulta la identificación de desperfectos menores.

Luego de identificados estos factores, se llevó a cabo una ponderación de las causas, con ayuda del jefe de producción de la empresa, obteniéndose los siguientes resultados en la figura 3.

Diagrama de Pareto

14.00%

14.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10.00%

10

**Figura 3.**Diagrama de Pareto: Baja productividad

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De este modo, se observan que las principales causas que parecen estar mermando la productividad son el deficiente proceso de control de calidad en el envasado, lo que genera los reprocesos; la falta de capacitación de los operarios, quienes cometen errores al momento de realizar sus funciones en la línea de producción; la falta de cumplimiento del programa de mantenimiento semestral y la falta de indicadores de eficiencia y eficacia en la empresa.

Por este motivo, dado que investigadores como Gupta et al. (2017) definen que la metodología Six Sigma permite mejorar y controlar los procesos en función a la optimización y a una mayor eficiencia, se considera relevante aplicarla para identificar las causas raíz significativas que originan los reprocesos y la baja productividad en Grupo Pacific Oil S.A.C., a fin de plantear soluciones que disminuyan los errores en la producción y estandaricen la calidad del proceso productivo.

#### Formulación del problema

#### Problema general

¿En qué medida la aplicación de la metodología Six Sigma incrementa la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022?

#### Problemas específicos

¿En qué medida la aplicación de la metodología Six Sigma disminuye los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022?

¿En qué medida la aplicación de la metodología Six Sigma incrementa la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022?

¿En qué medida la aplicación de la metodología Six Sigma incrementa la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022?

#### Objetivos de la investigación

#### Objetivo general

Determinar en qué medida la aplicación de la metodología Six Sigma incrementa la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

#### Objetivos específicos

Determinar en qué medida la aplicación de la metodología Six Sigma disminuye los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

Determinar en qué medida la aplicación de la metodología Six Sigma incrementa la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

Determinar en qué medida la aplicación de la metodología Six Sigma incrementa la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

#### Justificación de la investigación

#### Teórica

La presente investigación tuvo una justificación teórica, ya que contó con las bases teóricas suficientes para respaldar el estudio de las variables Six Sigma y Productividad.

Asimismo, este estudio permitió incrementar el número de investigaciones que se enfocan

en evaluar la relación entre estas dos variables, especialmente en el rubro de aceites industriales.

#### Práctica

Por otro lado, esta investigación tuvo una justificación práctica, ya que ayudó a la empresa Grupo Pacific Oil S.A.C. a mejorar sus resultados en la producción y en los reprocesos, así como a optimizar los niveles de productividad del área de Producción.

#### Metodológica

Finalmente, este trabajo tuvo una justificación metodológica, ya que se realizó teniendo en consideración todos los procedimientos estipulados en el método científico de investigación. Por lo tanto, esta investigación inició con el planteamiento del problema de investigación, para luego proceder con la identificación de los problemas, la formulación de los objetivos y de las hipótesis. Posteriormente, se realizó el diseño de investigación y se aplicaron las herramientas de ingeniería correspondientes. Finalmente, se realizaron pruebas estadísticas para desarrollar las pruebas de hipótesis correspondientes, permitiendo concluir sobre las hipótesis planteadas.

#### Delimitación del estudio

#### Delimitación geográfica

Esta investigación se llevó a cabo en las instalaciones de la empresa Grupo Pacific Oil S.A.C., específicamente en el área de Producción de la empresa. La implementación de la metodología Six Sigma no se realizó en ninguna otra área de la empresa, ni en las otras empresas asociadas a la organización materia de investigación.

#### Delimitación temporal

Esta investigación se llevó a cabo durante el presente año 2023, con la información provista por la empresa correspondiente al periodo de enero a diciembre del año 2022. En el presente año 2023, se realizó la implementación de la metodología Six Sigma y se

realizaron las simulaciones post implementación. Por lo tanto, la investigación fue de corte transversal, con mediciones realizadas en el año actual.

#### CAPÍTULO II: MARCO TEÓRICO

#### Antecedentes de la investigación

#### Antecedentes nacionales

Sierralta (2022) desarrolló un estudio en el que evaluó la productividad de una empresa textil y cómo esta se ve afectada por aplicación de la metodología Six Sigma. El estudio fue de método científico, de tipo aplicado, con nivel explicativo y diseño cuasi experimental. Como población, se consideró a las 50 empresas textiles de Huancayo, de las cuales se tomó como muestra a una de las empresas. Al recolectar la información, se utilizaron las técnicas de la observación directa y el análisis documentario, teniendo como herramientas la ficha de observaciones y la documentación de la empresa. Los resultados mostraron que las fallas de operaciones eran 196 en total, las cuales fueron el 54% de las fallas totales, mientras que las fallas de máquinas fueron un total de 145 representando el 46% de las fallas totales. De acuerdo con los resultados hallados, la eficacia pretest fue del 84.29%, la cual se incrementó a un nivel de 97.56% al aplicar la mejora, generando un aumento del 13.27%. Asimismo, la productividad antes de aplicar las mejoras era del 69.87%, incrementándose hasta un 95.31% luego de la aplicación de Six Sigma. En conclusión, se determinó que la metodología Six Sigma logró afectar positivamente a la productividad de la empresa, generando un aumento total del 25.44%.

Calderón (2020) desarrolló una investigación sobre la metodología Six Sigma y su influencia en la productividad de una empresa de plásticos. La investigación fue de enfoque cuantitativo, de tipo aplicada, de diseño cuasi experimental y método explicativo. Como población, se consideró a la producción total del año 2018, de la cual se tomó como muestra a la producción de la línea de plásticos de la empresa. Como técnicas para la recolección de información, se utilizaron la observación directa y el análisis de documentos, siendo sus herramientas la guía de observaciones y los registros de la empresa. En los resultados, se pudo observar que, luego de implementar la metodología Six Sigma, la merma se redujo en un 37.9%. Otro resultado mostró que los gramajes pasaron del nivel

sigma inicial de 1.95 a un nivel sigma final de 4.17, generando un ahorro de 2,727.35 kilogramos de materias primas. Asimismo, al aplicar el trabajo estándar, se logró disminuir los trabajos inconformes a 283 por mes, los mismos que, anteriormente, eran equivalentes a 471 por mes. Finalmente, se concluyó que la metodología Six Sigma y sus herramientas aplicadas correctamente logran mejorar significativamente la productividad de la empresa, ya que todos los procesos se optimizan y se alcanza una mejora significativa en sus dimensiones, como la merma, el consumo de materias y la disminución de inconformes.

Florián (2020) elaboró un estudio sobre la productividad de la empresa Dominion y cómo esta se afecta por la metodología Six Sigma en Chorrillos. El estudio fue cuantitativo, así como descriptivo y correlacional. La población se conformó de la totalidad de trabajadores de la empresa, es decir, 40 empleados; la muestra fue censal, puesto que se trabajó con toda la población de estudio. Para poder recoger los datos, se utilizaron las técnicas de la encuesta y la observación directa, por lo que las herramientas aplicadas fueron el cuestionario y la ficha de observaciones. Los resultados mostraron que los niveles de Six Sigma, de acuerdo con los colaboradores, eran deficientes en un 35% de los casos, regulares en un 62.50% de los casos y eficientes en el 2.50% restante. Con relación a la productividad, esta se presentó deficientemente para el 2.50% de los casos, regular para el 90% de los casos y eficiente para el 7.50% restante. Por otro lado, la eficacia mostró niveles deficientes en el 10% de los casos, mientras que el 85% de los casos fue regular y el 5% restante fue eficiente. Como conclusión principal, se demostró que la productividad se ve afectada positivamente por la metodología Six Sigma, debido al coeficiente de correlación Rho de Spearman calculado, el cual fue equivalente a 0.483 (correlación positiva media).

Fernández y Rimapa (2018) desarrollaron una investigación sobre la productividad de la empresa El Águila y de la aplicación de la metodología Six Sigma para potenciarla. El tipo de investigación fue aplicada y descriptiva, de método analítico, inductivo y deductivo. La población se conformó por la totalidad de procesos realizados en la empresa,

de los cuales se tomó como muestra solo a los procesos productivos. Las técnicas para poder recoger la información fueron la encuesta, el análisis documentario y la observación, teniendo como herramientas al cuestionario, la ficha de observaciones y la guía de análisis documentario. Los resultados mostraron que los problemas más frecuentes eran la falla de maquinaria en un 26%, las paradas de línea en un 20% y los productos defectuosos en un 19%. Al consultar sobre las causas de los problemas, se determinó que el 23% se debían a una receta inadecuada, el 19% a la falta de mantenimiento y el 16% a cambios frecuentes de programación. Con relación a la responsabilidad sobre dichos problemas, el 43% de los trabajadores indicó que es de las máquinas, mientras que el 23% sostuvo que se debe al planeamiento de producción. Luego de analizados todos estos resultados, se concluyó que la productividad de la empresa se encuentra en constante descenso, pues mantiene un indicador promedio de 1.378, por lo que se considera necesaria la aplicación de la metodología Six Sigma para optimizar estos procesos.

Núñez (2018) realizó un estudio sobre la metodología Six Sigma y su aplicación para mejorar la productividad de la empresa Moriwoki Racing Perú. El estudio fue de diseño preexperimental, fue aplicado, de nivel explicativo, con enfoque cuantitativo y alcance longitudinal. La población del estudio fue 60 días de evaluación; la muestra fue censal, dado que la población fue bastante pequeña. Al momento de recoger la información, se aplicó la técnica de la observación de campo, teniendo como herramienta la hoja de registro. Los resultados mostraron que los almacenes estaban siendo ocupados en un 82% de su capacidad eficiente, lo cual reducía su productividad. La eficacia al inicio alcanzaba el 45%; sin embargo, luego de aplicar la metodología Six Sigma se logró alcanzar el 81%. La eficiencia de la empresa en el estado pretest alcanzó niveles del 67%, los cuales pasaron a un nivel final de 77% luego de aplicar las mejoras de Six Sigma. En conclusión, se determinó que la aplicación de la metodología Six Sigma en la empresa en cuestión logró mejorar su productividad, incrementándola desde un 32% a un valor final de 57%.

#### Antecedentes internacionales

Pacheco y Gómez (2022) desarrollaron una investigación sobre la aplicación de la metodología Six Sigma en el área de envasado de cilindros de una empresa petrolera, mejorando su productividad. El método de la investigación fue deductivo, de tipo explicativa, de diseño experimental y enfoque mixto. Su población se conformó de 1,800 cilindros por mes y de los 30 trabajadores de la empresa, de los cuales se consideró como muestra a 380 procesos y 10 envasadores. Las técnicas utilizadas para recolectar la información fueron la encuesta, la entrevista y la observación, teniendo como herramientas la guía de entrevistas, el cuestionario y la ficha de observaciones. En los resultados, se pudo observar que la producción inicial por hora era de 1,400 cilindros, generando un rendimiento del 58%. Al aplicar las mejoras de la metodología Six Sigma, el rendimiento mejoró hasta un 92%, alcanzando a producir 2,200 cilindros por hora. Además, gracias al estudio realizado, se encontró que el proceso de extraer gas sobrante del cilindro consumía más tiempo de lo adecuado en un 68% adicional, mientras que el llenado excedía en 23% y encontrar fugas el 9%. Finalmente, se concluyó que la metodología Six Sigma logró aumentar la productividad de la empresa, aumentando los ingresos de \$1,680 dólares a \$ 2,671.2 dólares por hora.

Viana (2022) elaboró un estudio sobre la metodología Six Sigma y su efecto sobre la calidad de la florícola Flores Mágicas. El estudio fue documental, así como de campo; presentando un enfoque mixto. Como población, se consideró al total de tallos fabricados, siendo estos de 17,000 unidades, de los cuales se seleccionó una muestra de 376 tallos de forma aleatoria. Para poder recolectar los datos, se utilizaron las técnicas de la entrevista y la observación, por lo que las herramientas utilizadas fueron la ficha de observaciones y el cuestionario. Luego de la implementación de la metodología Six Sigma, los resultados demostraron que los defectos por procesos fueron reducidos hasta un 70%, pues el promedio de defectos inicial era igual 0.0777, disminuyendo hasta ser igual a 0.0236; de este modo, se logró alcanzar un nivel equivalente a un 3% de tallos sin defectos.

Gracias a ello, los costos de no calidad lograron reducirse en \$ 7,320 dólares mensuales, lo que representó un aumento de las ganancias de la empresa. Como conclusión, se determinó que la productividad de la empresa se ve afectada positivamente por la metodología Six Sigma y la aplicación de sus herramientas de mejora.

Bonilla (2020) realizó un estudio sobre los factores de mayor relevancia de la metodología Six Sigma que inciden sobre la productividad de las MIPYMES en Colombia. El tipo de estudio fue descriptivo, no experimental y con diseño transversal; además, contó con un enfoque mixto y fue de método inductivo. Como población, se consideró a las MIPYMES colombianas que tuvieron contacto con el investigador y que han aplicado, en algún momento, la metodología Six Sigma; de este conjunto de empresas, se seleccionaron a 6 como muestra de estudio. Los resultados iniciales mostraron que el 69.51% de las empresas nunca o casi nunca se plantean estrategias o el cumplimiento de estas, lo que afecta seriamente sus niveles de productividad. Otro resultado relevante mostró que el 31.98% de las empresas nunca o rara vez analizan los datos históricos, mientras que el 34.68% algunas veces lo hacen y el 33.33% siempre o casi siempre analizan su información para el desarrollo de estrategias de mejora de la productividad. Además, entre las empresas evaluadas se pudo encontrar que ninguna de ellas plantea una visión a futuro, lo que significa que no mantienen metas para la consecución de objetivos, lo cual merma aún más sus niveles de productividad pues no cuentan con una guía para el trabajo. En conclusión, luego de evaluados estos resultados, se determinó quela aplicación de la metodología Six Sigma en las empresas en cuestión no es la correcta, lo cual se ve reflejado en los bajos niveles de productividad empresarial.

Gallardo y Montecé (2019) llevaron a cabo una investigación sobre la metodología Six Sigma y su aplicación en los procesos de la empresa AQ-Line de comercio exterior. La investigación fue de tipo descriptiva y exploratoria, con diseño no experimental y de método inductivo. Como población, se consideró a los 20 trabajadores de la empresa AQ-Line; al contar con un pequeño número poblacional, la muestra trabajada fue de tipo censal. Para

poder recoger la información, se utilizaron las técnicas de la encuesta, la entrevista y la observación, teniendo como herramientas de recolección la guía de entrevistas, el cuestionario y la ficha de observaciones. Los resultados obtenidos de las encuestas a los trabajadores mostraron que el 20% de los encuestados conocen el término DMAIC, mientras que el 80% no lo hace. Así mismo, el 15% de los trabajadores aplica la metodología DMAIC pues se ha realizado previamente en la empresa y han sido capacitados en ello, mientras que el 85% restante no puede aplicar esta metodología por cuestiones de desconocimiento. Un elemento importante que muestra los problemas de la institución es que la visión estratégica de la empresa no es conocida por más del 40% de los trabajadores, lo que, definitivamente, tienen un impacto negativo en la productividad, pues no se tiene una visión de hacia dónde se desea llegar con la empresa. Al cuestionar sobre metas y objetivos, el 25% mencionó que nunca se cumplen, mientras que el 65% de trabajadores indicó que se cumplen en ocasiones. En conclusión, luego de obtenidos estos resultados, se determinó que, si bien la metodología no está aplicada completamente en la empresa, sí hay un porcentaje de colaboradores que aplica técnicas de esta metodología; a pesar de ello, la productividad de la organización no es la ideal, por lo que se requiere de una nueva implementación y capacitación para todos los trabajadores.

Benítez (2019) desarrolló una investigación sobre las MYPES de Quito, determinando cómo su productividad se ve afectada por la metodología Six Sigma en los últimos 5 años. La investigación fue mixta, ya que se utilizó la investigación cualitativa y cuantitativa. Como población, se tuvieron a las 388 PYMES registradas en Pichincha, de las cuales se seleccionaron 5 como muestra para el estudio. Las técnicas para recolectar la información fueron el análisis documentario y la entrevista, mientras que las herramientas usadas fueron artículos relacionados al tema y la guía de entrevistas. En los resultados encontrados, se pudo observar que una de las empresas presentó una mejora del nivel sigma desde un valor de 0.132 a un valor de 1.62, mejorando su rendimiento en un 52%. Otro resultado demostró que la capacidad productiva pasaba de un factor inicial

de 0.24 a un factor final de 1.26, con un nivel Sigma de 3.26. Así mismo, se determinó que al aplicar las mejoras de Six Sigma, una empresa logró ahorrar hasta \$ 15,000 al año sin cambiar su sistema tecnológico. En conclusión, luego de haber analizado los resultados de distintas empresas que aplicaron la metodología Six Sigma, se determinó que solo 5 empresas aplican correctamente esta metodología en Quito, mostrando signos de mejora constante en su productividad.

#### Bases teóricas

#### Six Sigma

Encalada et al. mencionan que "Six Sigma es una medida sobre que tan buenos son los productos y servicios; un nivel Sigma más alto significa mayor calidad de un producto o servicio y un nivel más bajo significa mala calidad" (2020, p. 184).

Gunjan y Tushar (2016), definen que Six Sigma es un enfoque sistemático para la mejora de procesos que busca minimizar la variabilidad y eliminar defectos o errores. Esta metodología utiliza técnicas estadísticas y herramientas para lograr una calidad cercana a la perfección en la entrega de productos o servicios.

Asimismo, Message et al. (2018) definen que Six Sigma es una estrategia de gestión de calidad que se centra en identificar y eliminar las causas de defectos o errores en los procesos de negocio, utilizando un conjunto de métodos y herramientas cuantitativas.

Por otro lado, Gupta et al. (2017) definen que la metodología Six Sigma implica una serie de etapas estructuradas para analizar, mejorar y controlar procesos, apuntando a la optimización y la eficiencia.

Finalmente, para Antony et al. (2017), es una metodología que se sustenta en información que le permita mejorar la calidad de los productos, al mismo tiempo que reduzca la variabilidad de los procesos; de esta manera, los productos llegarán con menos fallos al consumidor.

#### Desarrollo de Six Sigma

Encalada (2020) menciona que, en los años 80's, la empresa Motorola de Estados Unidos presentó la metodología Six Sigma por primera vez, la cual se volvió popular 10 años después, debido a que el presidente de la empresa General Electric reconociera que dicha metodología fue la de mayor impacto en toda la historia de su compañía.

Antony et al. (2017) agregaron que Six sigma se diferencia de las otras metodologías debido a su capacidad de solucionar problemas de mayor complejidad en las organizaciones, realizando análisis en base a datos, confirmando sus resultados y asegurando que los beneficios se mantengan a largo plazo; dando seguridad sobre la correcta gestión organizacional.

#### Fases del Six Sigma

Message et al. (2018) mencionan que, ya que es una metodología, Six Sigma sigue una secuencia ordenada; dicha secuencia se le conoce como DMAIC, ya que primero se define el problema; luego se realiza la medición; con los datos recolectados se empieza a analizar; posteriormente se elaboran las mejoras y se aplican; y finalmente se realiza el control de las mejoras en el tiempo.

Luis et al. (2014) sostienen que la metodología Six Sigma presenta distintos pasos en su metodología, los cuales son: definir, medir, analizar, mejorar y controlar; recalcando que en cada paso se utilizan distintas herramientas estadísticas para ser desarrollados.

Antony et al. (2017) define que DMAIC es una secuencia lógica de cinco fases que proporcionan un marco riguroso para resolver problemas y mejorar procesos en un entorno empresarial. Estas fases permiten a los equipos identificar claramente el problema (Definir), cuantificar su impacto (Medir), comprender sus causas raíz (Analizar), implementar soluciones efectivas (Mejorar) y asegurar que los cambios sean sostenibles (Controlar).

#### Definir

De acuerdo con Pyzdek y Keller (2014) la fase Definir en Six Sigma se centra en establecer los objetivos y alcances del proyecto. En este punto, se identifican las necesidades de los clientes y se determinan las métricas clave que guiarán el proyecto.

Cudney et al. (2018) establece que la fase Definir es la etapa inicial donde se identifican las partes interesadas, se recolectan sus requisitos y se formaliza el alcance del proyecto. Se emplean técnicas como VOC (Voz del Cliente) para comprender mejor las expectativas de los usuarios o clientes.

Arcidiacono y Pieroni (2018) definen que Definir es la primera etapa en Six Sigma que establece la dirección para el resto del proyecto. Esta fase implica delinear los límites del proceso y establecer metas financieras y de calidad, lo que ayuda al equipo a centrar sus esfuerzos de mejora.

#### Medir

Según Pyzdek y Keller (2014), en la fase Medir el objetivo principal es recopilar datos cuantitativos sobre el proceso actual para establecer una línea de base de rendimiento. Esto permite una evaluación más precisa del impacto de las mejoras posteriores.

Cudney et al. (2018) establecen que en la fase de Medir se establecen métricas específicas relacionadas con el problema definido en la etapa anterior. Estas métricas se recopilan a través de varios ciclos del proceso para asegurar que los datos sean representativos

Finalmente, Arcidiacono y Pieroni (2018) definen que en Six Sigma, la fase Medir se encarga de evaluar la eficiencia y efectividad del proceso actual, empleando métricas como defectos por unidad, tasa de defectos y capacidad del proceso. Estas métricas sirven como un punto de partida para las mejoras futuras.

#### Analizar

De acuerdo con Pyzdek y Keller (2014), la fase Analizar se enfoca en evaluar los datos recopilados para determinar las causas raíz de las variaciones y defectos en un proceso.

Cudney et al. (2018) establecen que Analizar es la fase en la que se utilizan herramientas estadísticas para probar hipótesis sobre las causas raíz de los problemas identificados.

Asimismo, Arcidiacono y Pieroni (2018) definen que la fase Analizar es donde se emplean técnicas como el análisis de regresión, pruebas de hipótesis y análisis de varianza (ANOVA) para entender cuáles son las variables más influyentes en un proceso y cómo afectan la calidad final del producto o servicio.

#### Mejorar

Según Pyzdek y Keller (2014), la etapa Mejorar está dedicada a desarrollar, probar e implementar soluciones para corregir las causas raíz identificadas en la fase de análisis.

Cudney et al. (2018) establecen que Mejorar es la etapa donde se aplican cambios en el proceso con el objetivo de reducir o eliminar los defectos y las variaciones identificadas. Es aquí donde se ve el impacto directo de las acciones tomadas para mejorar la calidad.

Arcidiacono y Pieroni (2018) definen que la etapa de Mejorar es donde las ideas se convierten en acciones concretas para mejorar un proceso o sistema. Se desarrollan planes de implementación detallados, que a menudo incluyen pruebas piloto, para asegurarque las mejoras sean efectivas y sostenibles.

#### Controlar

De acuerdo con Pyzdek y Keller (2014), en la etapa Controlar el objetivo es asegurar que las mejoras implementadas en la fase anterior sean sostenibles a lo largo del tiempo.

Esto a menudo implica el uso de gráficos de control y otros indicadores para monitorear el rendimiento del proceso.

Cudney et al. (2018) establecen que Controlar es la etapa final en el ciclo DMAIC de Six Sigma, centrada en el monitoreo continuo del proceso mejorado para asegurar que se mantenga en su nivel óptimo. En esta fase, se realiza una transferencia de conocimiento y responsabilidad al equipo de operaciones.

Según Encalada et al. (2020), en este punto se debe controlar el nivel sigma mediante mediciones; en caso este sea menor a 6, se deberá seguir optimizando los procesos de producción.

### Herramientas utilizadas en Six Sigma

A continuación, en la figura 4, se presentan las herramientas que son comúnmente utilizadas durante cada una de las etapas de Six Sigma.

**Figura 4.** *Herramientas utilizadas en Six Sigma* 

# HERRAMIENTAS DEL SIX SIGMA

### **DEFINIR**

Diagrama de procesos Diagrama de SIPOC CTO

### **MEDIR**

Diagrama de Pareto Histogramas Capacidad de procesamiento Gráficos de control

## **ANALIZAR**

Gráficos de dispersión Correlaciones Análisis de regresión Matriz C&E FMEA ANOVA

### **MEJORAR**

Poke Yoke
Diseño de
experimentos
FMEA
Simulaciones

### **CONTROLAR**

Planes de control
Gráficos de
control
Estandarización
de proceso y
documentación

Nota: Adaptado de "Critical analysis of Six Sigma implementation" por Moosa y Sajid, 2010.

Luis et al. (2014) mencionan que las herramientas más utilizadas por cada fase de la metodología Six Sigma son:

- Definir: Diagrama de procesos
- Medir: Histogramas, distribuciones de normalidad, capacidad del proceso,
   planes de muestreo.
- Analizar: ANOVA, prueba de hipótesis, regresión lineal.
- Mejorar: Diseño de experimentos y tormenta de ideas.
- Control: Gráficos de control, control de procesos estadísticos, estandarización de procesos, entre otros más.

### Productividad

Rojas et al. (2018) sostienen que la productividad es la optimización de los recursos humanos, tecnológicos, materiales y financieros de una empresa para maximizar su rentabilidad.

Raya y Núñez (2015) definen que la productividad es la generación de valor añadido por unidad de recurso invertido.

Según Diaz et al., "la productividad es la medida del rendimiento de un sistema y se calcula dividiendo la producción obtenida por los recursos utilizados" (2018, p. 55).

Por otro lado, Baraei y Mirzaei mencionan que "la productividad es la relación entre la cantidad de productos generada y la cantidad de recursos utilizados." (2018, p. 15).

Según Sánchez et al. (2020), la productividad es la eficiencia con la cual los insumos son convertidos en productos.

### Reprocesos

Cevallos (2017) define el reproceso como el proceso extra realizado en consecuencia al mal proceso desarrollado anteriormente.

Según Criollo (2019), el reproceso es el volver a procesar un producto según sea requerido.

Para Baraei y Mirzaei (2018), el reproceso es la acción de corregir o volver a realizar una operación o proceso que no cumplió con los requisitos o expectativas establecidas inicialmente.

### Eficiencia

Para Camue et al. (2017), la eficiencia se refiere a la capacidad de lograr un objetivo o resultado deseado utilizando la menor cantidad de recursos posibles, como tiempo, dinero y esfuerzo.

Suárez (2017) define que, en el contexto empresarial, la eficiencia es la relación entre los insumos utilizados en un proceso y los resultados obtenidos, buscando minimizar los recursos y maximizar la calidad del output.

Rojas et al. (2018) indican que la eficiencia se refiere a la asignación óptima de recursos para satisfacer las necesidades y deseos de una sociedad con el menor desperdicio posible.

## Eficacia

Rojas et al. (2018) establecen que la eficacia se refiere a la capacidad de producir un efecto deseado o previsto. No se centra en los recursos utilizados, sino en alcanzar el objetivo.

Baraei y Mirzaei (2018) definen que la eficacia se relaciona con la extensión en la que las actividades planificadas se completan y se alcanzan los objetivos estratégicos.

Finalmente, Diaz et al. (2018) definen que la eficacia puede entenderse como la habilidad para resolver un problema o lograr un objetivo específico, sin importar los recursos que se hayan utilizado en el proceso.

### Marco conceptual

Aceite crudo: El aceite crudo se refiere al aceite vegetal sin refinar. Su componente principal es una mezcla de triacilglicerol, a menudo conocido como aceite neutro; también

contiene sustancias distintas de la glicerina y conocidas colectivamente como impurezas (Londoño et al., 2012).

Analizar: La fase Analizar se enfoca en evaluar los datos recopilados para determinar las causas raíz de las variaciones y defectos en un proceso (Pyzdek y Keller, 2014).

Blanqueado: Se realiza durante la refinación del aceite vegetal crudo. La tecnología de blanqueamiento utiliza tierra decolorante para reducir la cantidad de pigmentos o colorantes (carotenoides, clorofilas, etc.), metales pesados y restos de fósforo que quedan en el crudo que ya ha sido desgomado. De esta forma, el aceite es capaz de mejorar tanto en apariencia como en sabor (Parra, 2016).

Centrifugado: Sirve para mejorar la calidad del producto en cuanto a densidad y calidad de color, y se reduce el riesgo de que se produzcan asentamientos en las zonas de almacenamiento por hidratación de las grasas (Pérez, 2013).

Controlar: En la etapa Controlar el objetivo es asegurar que las mejoras implementadas en la fase anterior sean sostenibles a lo largo del tiempo. Esto a menudo implica el uso de gráficos de control y otros indicadores para monitorear el rendimiento del proceso (Pyzdek y Keller, 2014).

Definir: La fase Definir en Six Sigma se centra en establecer los objetivos y alcances del proyecto. En este punto, se identifican las necesidades de los clientes y se determinan las métricas clave que guiarán el proyecto (Pyzdek y Keller, 2014).

Desgomado: La tecnología de desgomado proporciona un medio para eliminar el fósforo del aceite crudo. Cuando el fósforo del aceite se combina con el oxígeno para formar fosfinas, los compuestos resultantes son tóxicos y difíciles de procesar (Londoño et al., 2012).

Desodorizado: El propósito del desodorizado es deshacerse de las sustancias que dan a los aceites crudos sus olores y sabores desagradables (Parra, 2016).

Eficacia: La eficacia se refiere a la capacidad de producir un efecto deseado o previsto. No se centra en los recursos utilizados, sino en alcanzar el objetivo (Rojas et al., 2018).

Eficiencia: La eficiencia se refiere a la capacidad de lograr un objetivo o resultado deseado utilizando la menor cantidad de recursos posibles, como tiempo, dinero y esfuerzo (Camue et al., 2017).

Envasado: Se trata de la introducción de un producto o producto alimenticio en un recipiente o receptor que está directamente en contacto con el mismo (Imelio, 2004).

Filtrado: Implica moverse a través de un medio poroso y permeable con un fluido para recuperar las partículas no deseadas que están suspendidas en él (Parra, 2016).

Medir: En la fase Medir el objetivo principal es recopilar datos cuantitativos sobre el proceso actual para establecer una línea de base de rendimiento. Esto permite una evaluación más precisa del impacto de las mejoras posteriores (Pyzdek y Keller, 2014).

Mejorar: La etapa Mejorar está dedicada a desarrollar, probar e implementar soluciones para corregir las causas raíz identificadas en la fase de análisis (Pyzdek y Keller, 2014).

Neutralizado: Este paso inicia después del desgomado. De acuerdo con la calidad del aceite crudo, la temperatura de calentamiento se mantiene en los neutralizadores entre 55°C y 70°C (Londoño et al., 2012).

Nivel Sigma: Se define como un indicador de la variabilidad de los datos estudiados, en función a las desviaciones estándares correspondientes a los límites especificados durante el análisis de capacidad del proceso (Salazar, 2019).

Productividad: La productividad es la eficiencia con la cual los insumos son convertidos en productos (Sánchez et al., 2020).

Reprocesos: El reproceso es la acción de corregir o volver a realizar una operación o proceso que no cumplió con los requisitos o expectativas establecidas inicialmente (Baraei y Mirzaei, 2018).

Six Sigma: Six Sigma es una estrategia de gestión de calidad que se centra en identificar y eliminar las causas de defectos o errores en los procesos de negocio, utilizando un conjunto de métodos y herramientas cuantitativas (Message et al., 2018).

### Hipótesis

# Hipótesis general

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

### Hipótesis específicas

H0: La aplicación de la metodología Six Sigma no disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

28

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la

eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la

eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

Variables e indicadores

Las variables, dimensiones e indicadores que se utilizarán en el desarrollo de la

presente investigación se detallan a continuación.

Variable independiente: Six Sigma

Dimensiones: Definir, Medir, Analizar, Mejorar y Controlar.

Indicadores: Producción mensual de aceite, Número de órdenes reprocesadas,

Nivel sigma inicial, p-valor de prueba de hipótesis para verificar causas raíz, Nivel sigma

final, Límite superior e inferior de gráficos de control

Variable dependiente: Productividad

Dimensiones: Reprocesos, Eficiencia y Eficacia.

Indicadores: Número de O.T. reprocesadas/Número de O.T. programadas, Horas

reales trabajadas/Horas totales programadas, Costos de insumos utilizados/Costo de

insumos programados, Número de O.T. realizadas/Número de O.T. programadas, Número

de botellas producidas correctamente/Número de botellas de un lote.

# CAPÍTULO III: METODOLOGÍA DE LA INVESTIGACIÓN

### Diseño de Investigación

### Diseño

La investigación tuvo un diseño Experimental ya que se llevó a cabo la aplicación de la metodología Six Sigma en una empresa fabricante de aceites vegetales. Según Creswell y Creswell (2017), un diseño experimental implica la manipulación activa de una o más variables independientes para observar su efecto en una variable dependiente, mientras se controlan otras variables que podrían afectar el resultado.

# Tipo – Nivel

La investigación fue de tipo aplicada, puesto que se realizaron mejoras significativas dentro de la empresa Grupo Pacific Oil S.A.C., las mismas que permitieron mejorar los valores de productividad y sus indicadores. De esta manera, el desarrollo de esta investigación tuvo una aplicación inmediata, brindando soluciones que mejoren la situación inicial de la empresa. Creswell y Creswell (2017) definen que la investigación aplicada se refiere al estudio y análisis enfocado en abordar y resolver problemas específicos o necesidades prácticas en diversos campos como la medicina, la ingeniería o la educación.

El nivel de investigación fue descriptivo – correlacional, ya que, en un primer momento, se realizó la descripción de la situación inicial de la empresa y su problemática, además de reportarse los valores de productividad y sus indicadores. Adicionalmente, la investigación fue correlacional puesto que se llevaron a cabo pruebas de hipótesis de correlación para validar las causas raíz de los problemas; además, se realizaron pruebas de comparaciones para evaluar las situaciones pre y post mejora. Al respecto, Hernández et al. indican que "para evaluar el grado de asociación entre dos o más variables, en los estudios correlacionales primero se mide cada una de éstas, y después se cuantifican, analizan y establecen las vinculaciones" (2014, p. 93).

### Enfoque

El enfoque de la investigación fue cuantitativo, ya que se llevaron a cabo mediciones de la variable productividad y sus indicadores. Estas mediciones permitieron realizar comparaciones estadísticas, a fin de demostrar la existencia de mejoras significativas luego de implementada la metodología Six Sigma.

### Hernández et al. definen que:

La investigación cuantitativa ofrece la posibilidad de generalizar los resultados más ampliamente, otorga control sobre los fenómenos, así como un punto de vista basado en conteos y magnitudes. También, brinda una gran posibilidad de repetición y se centra en puntos específicos de tales fenómenos, además de que facilita la comparación entre estudios similares (2014, p. 15).

## Población y muestra

La población de la investigación estuvo conformada por las 576 órdenes de trabajo que fueron fabricadas durante el año 2022, desde el mes de enero hasta el mes de diciembre de dicho año. Estas órdenes de trabajo correspondieron a la información de la empresa previa a las mejoras por Six Sigma. Al respecto, Hernández y Mendoza indican que la población es "el conjunto de todos los casos que concuerdan con una serie de especificaciones" (2018, p. 195).

Para poder determinar el tamaño de la muestra, se utilizó la fórmula estadística correspondiente a poblaciones finitas, que tienen un tamaño menor a las 100,000 unidades. Esta fórmula se detalla a continuación.

$$n = \frac{(Z_{\alpha}^{2})(p)(q)(N)}{\frac{2}{(e^{2})(N-1) + (Z_{\alpha}^{2})(p)(q)}}$$

La fórmula presentada tiene los siguientes componentes: La distribución normal estandarizada "Z", que tiene un valor de 1.96 cuando se trabaja a un 95% de confianza; la probabilidad de éxito "p", que tiene un valor de 50% en un escenario conservador; la probabilidad de fracaso "q", que tiene un valor de 50% en un escenario conservador; el margen de error "e", que tiene un valor del 5%; y el tamaño de la población "N", el cual es igual a 576 órdenes de trabajo. Luego de reemplazar todos estos valores en la fórmula, se obtuvo el tamaño muestral.

$$n = \frac{(1.96^2)(50\%)(50\%)(576)}{(5\%^2)(576 - 1) + (1.96^2)(50\%)(50\%)} = 231 \ O.T.$$

Los cálculos realizados definieron que el tamaño de la muestra será de 231 órdenes de trabajo. El muestreo fue probabilístico, pues las unidades muestrales fueron tomadas al azar. Con relación a la muestra, Hernández y Mendoza definen que "una muestra es un subgrupo de la población o universo que te interesa, sobre la cual se recolectarán los datos pertinentes, y deberá ser representativa de dicha población" (2018, p. 196).

### Instrumentos de Medida

Con relación a los instrumentos de recolección de datos, se utilizó la Ficha de registro de datos para llevar a cabo el Análisis documental y, además, se utilizó la Guía de entrevista, la cual ayudó a aplicar la técnica de la Entrevista.

De acuerdo con el Portal Académico CHH (2023), la Ficha de registro es un instrumento que permite recopilar los datos de las distintas fuentes consultadas, pertenecientes a distintas bases de información, como bibliotecas, hemerotecas, entre otros.

Asimismo, según Tejero, "la guía de la entrevista es el listado de preguntas que se prepara el investigador para interrogar al entrevistado" (2021, p. 69).

### Operacionalización de variables

La matriz de operacionalización de variables se detalla en la tabla 2.

**Tabla 2.** *Matriz de operacionalización de variables* 

| Variable         | Definición conceptual                                                                      | Dimensiones     | Indicadores                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Six Sigma     | Herrera (2006) sostiene que Six<br>Sigma es un conjunto de                                 | 1.1. Definir    | 1.1.1. Producción mensual de aceite                                                                                                                                     |
|                  | herramientas estadísticas enfocadas a gestionar la calidad de los procesos productivos,    | 1.2. Medir      | <ul><li>1.1.2. Número de órdenes reprocesadas</li><li>1.1.2. Nivel sigma inicial.</li></ul>                                                                             |
|                  | buscando mejorar dichos procesos a través de decisiones correctas.                         | 1.3. Analizar   | <ol> <li>1.1.3. p-valor de prueba de hipótesis para verificar causas<br/>raíz.</li> </ol>                                                                               |
|                  |                                                                                            | 1.4. Mejorar    | 1.1.4. Nivel sigma final.                                                                                                                                               |
|                  |                                                                                            | 1.5. Controlar  | 1.1.5. Límite superior e inferior de gráficos de control                                                                                                                |
| 2. Productividad | Según Prokopenko, "la productividad es la relación entre la producción obtenida por un     | 2.1.Reprocesos  | 2.1.1. Número de O.T. reprocesadas/Número de O.T. programadas.                                                                                                          |
|                  | sistema de producción o servicios y los recursos utilizados para obtenerla" (1998, p. 65). | 2.2. Eficiencia | <ul><li>2.2.1. Horas reales trabajadas/Horas totales programada</li><li>2.2.2. Costos de insumos utilizados/Costo de insumos programados</li></ul>                      |
|                  |                                                                                            | 2.3. Eficacia   | <ul><li>2.3.1. Número de O.T. realizadas/Número de O.T. programadas.</li><li>2.3.2. Número de botellas producidas correctamente/Número de botellas de un lote</li></ul> |

Nota: Elaboración propia.

#### Técnicas de Recolección de datos

En la presente investigación, se utilizaron las siguientes técnicas de recolección de datos: Análisis documental y entrevista. Se utilizó el análisis documental al momento de revisar los reportes diarios de las órdenes de trabajo y se utilizó la técnica de la entrevista para poder definir la Voz del cliente. Según Hernández et al., "la recolección de datos ocurre en los ambientes naturales y cotidianos de los participantes o unidades de análisis" (2014, p. 397).

De acuerdo con Dulzaides y Molina:

El análisis documental centra su atención en la producción documental que se genera diariamente y, al conocer de su existencia, se posesiona de ella, la asimila por medio de lenguajes documentales construidos artificialmente mediante claves y reglas, útiles para organizar las fuentes de manera que facilite su utilización (2004, p. 2).

Por otro lado, de acuerdo Díaz et al., la Entrevista "se define como una conversación que se propone un fin determinado distinto al simple hecho de conversar. Es un instrumento técnico que adopta la forma de un diálogo coloquial" (2013, p. 163).

## Técnicas para el Procesamiento y Análisis de la Información

Para recolectar la información necesaria, se realizó una solicitud a la empresa Grupo Pacific Oil S.A., a fin de que brinde los reportes diarios de las órdenes de trabajo del periodo enero – diciembre del 2022. Una vez obtenida esta información, se procedió a transcribirla a la Ficha de registro de datos digital, la cual fue desarrollada en Excel. Los datos recolectados correspondieron al número de órdenes de trabajo realizadas, las horas reales utilizadas, los niveles de reprocesos, los tiempos de trabajo por etapa, entre otros factores.

Una vez que se contó con toda la información recopilada, se procedió a realizar el análisis de los datos, siguiendo los pasos del DMAIC Six Sigma. En primer lugar, se

realizaron análisis estadísticos descriptivos, que permitieron conocer los indicadores puntuales de tendencia central (media) y de dispersión (varianza y desviación estándar) de los datos obtenidos relacionados con la productividad. Además de ello, se realizaron los análisis de Capacidad de proceso (Nivel Sigma) y de Control estadístico de procesos. Posteriormente, se realizaron los análisis estadísticos inferenciales, en los que se compararon los niveles de productividad antes y después de la implementación de Six Sigma. Para ello, se llevaron a cabo pruebas de diferencia de medias (t de Student) para situaciones pre y post test. El paquete estadístico que se utilizó fue Minitab versión 19.

# Cronograma de actividades y presupuesto

El cronograma del proceso de investigación se detalla en la figura 5.

**Figura 5.**Cronograma de investigación

|    |                                                                        |            |            |          |                     |                             |                     |                     |              |           | _        |         |         |           |
|----|------------------------------------------------------------------------|------------|------------|----------|---------------------|-----------------------------|---------------------|---------------------|--------------|-----------|----------|---------|---------|-----------|
| Id | Actividad                                                              | Inicio     | Fin        | Duración | Nov 2022            | Dic 2022                    | Ene 2023            | Feb 2023            | Mar 20       |           | <u> </u> | Abr 202 | _       | May. 2023 |
|    |                                                                        |            |            |          | 6/11 13/11 20/11 27 | 7/11 4/12 11/12 18/12 25/12 | 1/1 8/1 15/1 22/1 2 | 9/1 5/2 12/2 19/2 2 | 6/2 5/3 12/3 | 19/3 26/3 | 2/4      | 9/4 16  | /4 23/4 | 30/4 7/5  |
| 1  | S elección del tema de investigación                                   | 1/11/2022  | 7/11/2022  | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 2  | Planteamiento del problema                                             | 8/11/2022  | 14/11/2022 | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 3  | Definición del problema, objetivos e<br>hipótesis de investigación     | 15/11/2022 | 21/11/2022 | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 4  | Estudio de antecedentes de investigación                               | 22/11/2022 | 28/11/2022 | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 5  | Definición de la justificación y de la<br>metodología de investigación | 28/11/2022 | 4/12/2022  | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 6  | Presentación de plan de tesis                                          | 5/12/2022  | 18/12/2022 | 2s       |                     |                             |                     |                     |              |           |          |         |         |           |
| 7  | Definición de la población y muestra de investigación                  | 19/12/2022 | 25/12/2022 | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 8  | Aplicación de la metodología Six Sigma<br>en Grupo Pacific Oil S.A.C.  | 1/01/2023  | 25/02/2023 | 8s       |                     |                             |                     |                     |              |           |          |         |         |           |
| 9  | Evaluación estadís tica de resultados                                  | 26/02/2023 | 11/03/2023 | 2s       |                     |                             |                     |                     |              |           |          |         |         |           |
| 10 | Desarrollo de pruebas de hipótesis                                     | 12/03/2023 | 18/03/2023 | ls       |                     |                             |                     |                     |              | ]         |          |         |         |           |
| 11 | Discusión de resultados                                                | 19/03/2023 | 25/03/2023 | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 12 | Conclusiones y recomendaciones                                         | 26/03/2023 | 1/04/2023  | ls       |                     |                             |                     |                     |              |           |          |         |         |           |
| 13 | Presentación final de tesis                                            | 2/04/2023  | 29/04/2023 | 4s       |                     |                             |                     |                     |              |           |          |         |         |           |
| 14 | Sustentación                                                           | 30/04/2023 | 6/05/2023  | ls       |                     |                             |                     |                     |              |           |          |         | -       |           |

Nota: Elaboración propia.

El trabajo de investigación tuvo una duración de 26 semanas aproximadamente, equivalente a 6 meses y medio de trabajo. El presupuesto proyectado para el desarrollo de esta investigación es el siguiente.

**Tabla 3.** Presupuesto de investigación

| Inversión                                                        | Financiamiento |
|------------------------------------------------------------------|----------------|
| 1. Capital humano                                                | S/ 7,000.00    |
| Tesista Diana Cabezudo                                           | S/ 7,000.00    |
| 2. Materiales                                                    | S/ 5,540.00    |
| Laptop Lenovo                                                    | S/ 4,500.00    |
| Útiles de oficina (hojas, lapicero, corrector, resaltador, etc.) | S/ 220.00      |
| Impresora c/ escáner                                             | S/ 470.00      |
| Libros, e impresiones sobre Six sigma                            | S/ 350.00      |
| 3. Softwares de procesamiento de datos                           | S/ 145.00      |
| Excel 2019                                                       |                |
| Power Point 2019                                                 | S/ 145.00      |
| Word 2019                                                        |                |
| Minitab v.29                                                     | S/. 0.00       |
| 4. Servicios                                                     | S/ 1,660.00    |
| Impresión de tesis                                               | S/ 80.00       |
| Empastado de documento final, anillado de avances                | S/ 180.00      |
| Servicio de internet                                             | S/ 700.00      |
| Servicio de transporte                                           | S/ 700.00      |
| Presupuesto total                                                | S/ 14,345.00   |

Nota: Elaboración propia.

# CAPÍTULO IV: DESARROLLO DEL EXPERIMENTO

### Plan Estratégico de la empresa

La empresa actualmente no cuenta con una declaración formal de la misión y la visión; sin embargo, a partir de las entrevistas con los gerentes de la organización, se ha construido lo siguiente:

### Misión

"Producir y comercializar aceites vegetales de soya de alta calidad para nuestros clientes, brindando seguridad y confianza a las pequeñas y medianas industrias"

### Visión

"Ser una empresa líder en la producción y envasado de aceites vegetales a nivel nacional, a través de productos saludables y de elevada calidad para el mercado".

### Objetivos estratégicos

- Incrementar el nivel de ventas de los aceites en su presentación de 1L en un 5% anual.
- Alcanzar un margen de rentabilidad neta del 15% sobre la inversión inicial.
- Incrementar la participación de mercado de la empresa en un 10%.
- Implementar sistemas de gestión de calidad que validen la confiabilidad de los procesos productivos de los aceites vegetales.

# Análisis FODA

El análisis FODA presentado en la tabla 4 es una construcción de la presente investigación, puesto que la empresa carece de este tipo de análisis en sus documentos oficiales. A partir de un trabajo conjunto con el jefe de operaciones, se construyó el siguiente análisis FODA.

reciclado contamina

|          | <b>la 4.</b><br>ategias FODA Grupo I                                                                                                                     | Pacif                                                      | c Oil S.A.C.                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          |                                                                                                                                                          | 38                                                         | <ol> <li>Elevada capacidad de producción diaria (60 ton/día).</li> </ol>                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       | Bajo posicionamiento en el mercado.                                                                                                                                                                                     |                                                                                                                                                                                                                             |  |
|          | FODA<br>Grupo Pacific Oil<br>S.A.C.                                                                                                                      | Fortalezas                                                 | <ol> <li>Plantas de producción altamente equipadas, modernas y automatizadas.</li> <li>Flexibilidad para manejar distintos tipos de presentaciones de productos.</li> <li>Buena ubicación de sus plantas de producción.</li> <li>Buena calidad en los productos</li> </ol>                                                                                                                              | Debilidades                                                                                                                                                           | <ol> <li>Baja publicidad de la marca.</li> <li>Baja disponibilidad financiera.</li> <li>Baja comunicación directa con los clientes.</li> <li>Baja interacción en las redes sociales.</li> </ol>                         |                                                                                                                                                                                                                             |  |
|          | <ol> <li>Aumento de<br/>precios en la<br/>economía local<br/>debido a la<br/>variación de la<br/>inflación.</li> </ol>                                   |                                                            | F5 – A2: Aplicar la estrategia de diferenciación para destacar y ofrecer características distintivas del producto, con el fin de destacarse de la competencia y atraer a un segmento específico de consumidores dispuestos a pagar un precio más alto por nuestros aceites.                                                                                                                             |                                                                                                                                                                       | D1 – A2: Aplicar la estrategia de posicionamiento de mercado a través de acciones de marketing y comunicación que comunican los beneficios y valores del producto y que además ayudarán a enfrentar a los competidores. |                                                                                                                                                                                                                             |  |
| Amenazas | 2. La rivalidad entre los competidores existentes es alta                                                                                                | res es alta nbios en ncias del r hacia nás sabe que aceite | щ                                                                                                                                                                                                                                                                                                                                                                                                       | F1 - A1: Aprovechar la elevada capacidad de producción y considerar la expansión hacia nuevos mercados con el objetivo de mitigar el impacto externo de la inflación. |                                                                                                                                                                                                                         | D2 – D4 – D5 – A3 – A4: Desarrollar la estrategia de promoción del producto que consiste en utilizar paneles publicitarios, desarrollo de página web / tienda virtual, programán de rodos sociales como Escaback, Instagram |  |
|          | <ol> <li>Cambios en las preferencias del consumidor hacia opciones más saludables</li> <li>Se sabe que un litro de aceite reciclado contamina</li> </ol> |                                                            | <ul> <li>F2 – A3: Se debe evaluar la diversificación de la oferta de productos, como el aceite de oliva, ajonjolí, entre otros, aprovechando la flexibilidad de elaboración de distintos aceites que posee la empresa.</li> <li>F2 - A4: Implementar certificación ISO 14001 - sistema de gestión ambiental, para poder contrarrestar la contaminación del agua generada por los aceites. Se</li> </ul> |                                                                                                                                                                       | creación de redes sociales como Facebook, Instagram, TikTok, y la implementación del servicio post venta para la relación con los clientes.                                                                             |                                                                                                                                                                                                                             |  |
|          |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       | D3 - A1 - A5: Solicitar asesoría a entidades del estado como PRODUCE para apoyar a la empresa con temas de financiamiento y medidas de protección en el mercado.                                                        |                                                                                                                                                                                                                             |  |

puede establecer una campaña de acopio de aceite usado

| ١ |  |  |  |
|---|--|--|--|
| d |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

**Oportunidades** 

aproximadamente 1,000 litros de agua.

 El alza del tipo de cambio dificulta la compra de la materia prima. para evitar que este sea desechado a través de los lavatorios.

F4 – A5: Para contrarrestar la amenaza se debe utilizarán instrumentos financieros como coberturas cambiarias para reducir el riesgo cambiario, optar por negociar con los proveedores actuales para obtener mejores precios en plazos más largos o ajustar los precios de venta para compensar el aumento en los costos de materia prima.

- Facilidad de adaptación de los clientes con los diferentes tipos de aceites.
- Consumo masivo de aceite en el sector de restaurantes y puestos de comida rápida.
- 3. Facilidades financieras por parte del Gobierno.
- El aceite vegetal es un producto básico de la canasta familiar.
- Mayor promoción en el cultivo de soya.

F1 – O5: Aplicar la estrategia de desarrollo de productos, lanzando nuevos productos al mercado, como el aceite de soya combinado con otro tipo de aceite. El objetivo es crear productos que satisfagan las necesidades y deseos de los clientes, generen ingresos y aumenten la participación en el mercado de la empresa.

- F5 O1: Aplicar la estrategia de precios competitivos fijando los precios de los productos de la empresa en base a los precios de la competencia, con el objetivo de ser igual o más atractivos para los clientes potenciales.
- F4 O2: Desarrollar folletos informativos que permitan promocionar y demostrar la calidad de los productos, con el objetivo de entregárselo al cliente y poder fidelizarlo.
- F3 O4: Aplicar la estrategia de desarrollo de nuevos productos para lanzar un tipo de aceite de mayor calidad como el aceite de oliva.
- F2 O3: Realizar un plan de crecimiento e implementación de nuevas tecnologías para el crecimiento de la empresa.

D4 – O1: Mejorar la calidad del servicio al cliente a través de la implementación del área correspondiente, con el fin de lograr fidelizar a los clientes.

D1 - D2 - D5 - O4 - O5: Realizar una investigación de mercado para identificar nuevas oportunidades, así como el desarrollo de una estrategia de marketing efectiva.

D3 - O2 - O3: Identificar y fortalecer las áreas críticas de la empresa. Identificar los programas gubernamentales que apoyen a empresas del sector de aceites y preparar un plan de negocios sólido y detallado que demuestre la viabilidad y el potencial de la empresa.

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

### Matriz EFI

La matriz de evaluación de factores internos (EFI) ayuda a evaluar las fortalezas y debilidades de una empresa en relación con los factores internos.

**Tabla 5.** *Matriz EFI – Evaluación de Factores Internos.* 

|    | Factores Internos Clave                                                   |             |              |                        |
|----|---------------------------------------------------------------------------|-------------|--------------|------------------------|
| N° | Fortalezas                                                                | Ponderación | Calificación | Puntuación<br>moderada |
| 1  | Elevada capacidad de producción diaria (60 ton/día).                      | 0.15        | 3            | 0.45                   |
| 2  | Plantas de producción altamente equipadas, modernas y automatizadas.      | 0.13        | 4            | 0.52                   |
| 3  | Flexibilidad para manejar distintos tipos de presentaciones de productos. | 0.1         | 3            | 0.30                   |
| 4  | Buena ubicación de sus plantas de producción.                             | n na        | 3            | 0.27                   |
| 5  | Buena calidad en los productos                                            | 0.14        | 4            | 0.56                   |
|    | Debilidades                                                               |             |              |                        |
| 1  | Bajo posicionamiento en el mercado.                                       | 0.10        | 1            | 0.10                   |
| 2  | Baja publicidad de la marca.                                              | 0.09        | 2            | 0.18                   |
| 3  | Baja disponibilidad financiera.                                           | 0.07        | 2            | 0.14                   |
| 4  | Baja comunicación directa con los clientes.                               | 0.08        | 1            | 0.08                   |
| 5  | Baja interacción en las redes sociales.                                   | 0.05        | 2            | 0.10                   |
|    | Total                                                                     | 1           |              | 2.70                   |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

Los resultados se interpretan de la siguiente manera: si la puntuación EFI es mayor a 2.5, la empresa tiene una posición interna fuerte; si es menor a 2.5, la empresa tiene una posición interna débil. En este caso, la empresa tiene un resultado de 2.70, esto quiere decir que tiene una posición interna fuerte gracias a las fortalezas de la organización. Además, al examinar los factores individuales para identificar cuáles son las fortalezas y debilidades específicas de la empresa, se determinó que una de las mayores fortalezas de la empresa es tener una planta de producción moderna y bien equipada, mientras que la debilidad más importante es el bajo posicionamiento en el mercado.

### Matriz EFE

La matriz de evaluación de factores externos (EFE) se utiliza para evaluar la posición estratégica actual de una empresa en relación con su entorno externo. Los factores externos se dividen en oportunidades y amenazas, y se les asigna un peso y una calificación.

**Tabla 6.** *Matriz EFE – Evaluación de Factores Externos* 

|    | Factores Externos Clave                                                                                                                            |             |              |                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------------|
| N° | Oportunidades                                                                                                                                      | Ponderación | Calificación | Puntuación<br>moderada |
| 1  | Facilidad de adaptación de los clientes con los diferentes tipos de aceites.                                                                       | 0.20        | 4            | 0.8                    |
| 2  | Consumo masivo de aceite en el sector de restaurantes y puestos de comida rápida.                                                                  | 0.11        | 3            | 0.33                   |
| 3  | Facilidades financieras por parte del Gobierno.                                                                                                    | 0.09        | 3            | 0.27                   |
| 4  | El aceite vegetal es un producto básico de la canasta familiar.                                                                                    | 0.08        | 3            | 0.24                   |
| 5  | Mayor promoción en el cultivo de soya.                                                                                                             | 0.06        | 4            | 0.24                   |
|    | Amenazas                                                                                                                                           | Ponderación | Calificación | Tuntuacion             |
|    |                                                                                                                                                    |             |              | moderada               |
| 1  | Aumento de precios en la economía local debido a la variación de la inflación.                                                                     | 0.12        | 3            | 0.36                   |
| 2  | La rivalidad entre los competidores existentes es alta                                                                                             | 0.1         | 3            | 0.3                    |
| 3  | Cambios en las preferencias del consumidor hacia opciones más saludables                                                                           | 0.06        | 1            | 0.06                   |
| 4  | Contaminación generada por el uso de aceites reciclados (se sabe que un litro de aceite reciclado contamina aproximadamente 1,000 litros de agua). | 0.05        | 3            | 0.15                   |
| 5  | El alza del tipo de cambio dificulta la compra de la materia prima.                                                                                | 0.13        | 2            | 0.26                   |
|    | Total                                                                                                                                              | 1.00        |              | 3.01                   |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

La puntuación total de la matriz EFE se interpreta de la siguiente manera:

- 3.0 a 4.0: la empresa está respondiendo bien a los factores externos
- 2.0 a 2.99: la empresa está luchando por responder a los factores externos
- 1 a 1.99: la empresa está luchando seriamente por responder a los factores externos.

 Menos de 1.0: la empresa está en una posición muy débil en relación con los factores externos.

En este caso, de acuerdo con el resultado obtenido (3.01), se concluye que la empresa se encuentra en el rango de resultado de 3.0 a 4.0, lo cual indica que la empresa está respondiendo bien a los factores externos.

### Metodología DMAIC

Pande et al. (2004) mencionan que Six Sigma sigue una secuencia ordenada; dicha secuencia se le conoce como DMAIC, ya que primero se define el problema; luego se realiza la medición; con los datos recolectados se empieza a analizar; posteriormente se elaboran las mejoras y se aplican; y finalmente se realiza el control de las mejoras en el tiempo.

A continuación, se desarrollaron cada una de las cinco etapas del DMAIC Six Sigma, utilizando las herramientas correspondientes a cada una de estas etapas.

## Definir

### Información general de la empresa

La razón social de la empresa estudiada es Grupo Pacific Oil S.A.C., la cual cuenta con número de RUC 20602063756. Esta empresa fue fundada en el año 2017 en el distrito del Rímac, en L de la Cuba, El Bosque. La empresa se dedica a la elaboración de aceites y grasas, así como a la venta por mayor de otros productos.

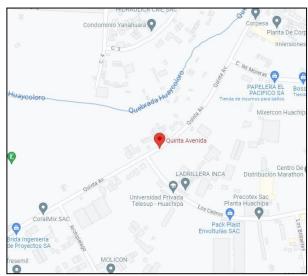
A lo largo de estos años, la empresa se ha posicionado como una empresa productora importante en el mercado de aceites, estando dentro de las 20 principales organizaciones del sector. Anualmente, la empresa tiene una capacidad instalada de producción de 360 toneladas de aceite, con lo que factura una cantidad aproximada de S/.23 millones anuales, con márgenes de utilidad promedio del 3%.

Los productos y presentaciones de aceites que la empresa fabrica y comercializa son los siguientes:

**Tabla 7.** *Productos y presentaciones* 

| Aceite            | Presentaciones            |
|-------------------|---------------------------|
| Aceite de soya    | Presentación de 200ml     |
| Aceite de palma   | Presentación de 500ml     |
| Aceite de algodón | Presentación de 900ml     |
| -                 | Presentación de 1 litro   |
|                   | Presentación de 5 litros  |
|                   | Presentación de 18 litros |
|                   | Presentación de 20 litros |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.


En el año 2022, la producción se ha limitado a la fabricación de soya, pues es el producto de mayor demanda y cuya cadena de distribución no se ha visto afectada por los proveedores externos de materias primas. Las presentaciones que es capaz de fabricar la empresa son las de 200 ml, 500 ml, 900ml, 1 litro, 5 litros, 18 litros y 20 litros. Actualmente, la presentación de mayor producción es la de 1 litro, debido a la mayor demanda de los clientes por este volumen de producto.

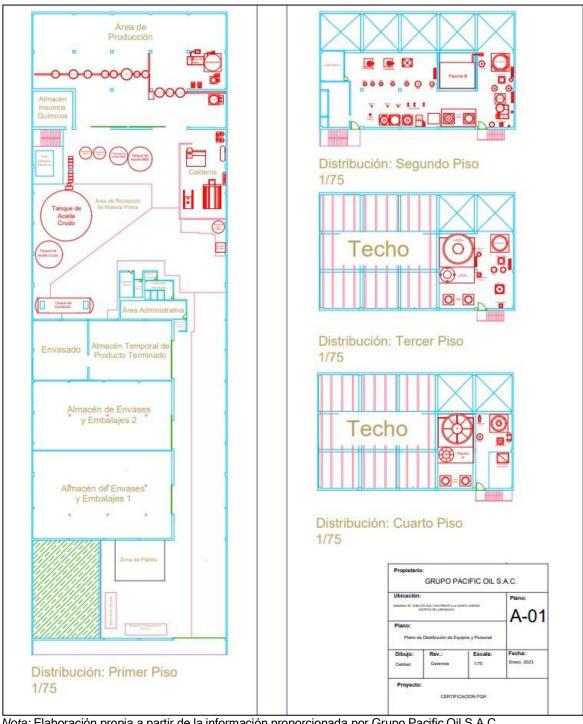
### Ubicación de la planta de producción.

La planta de producción se encuentra ubicada en la dirección avenida Quinta Avenida Manzana B Lote 20B, Santa María de Huachipa, Lurigancho, Lima. Esta ubicación estratégica se encuentra en una zona industrial, en la que se encuentran cercanos algunos proveedores de insumos (envases y otros materiales indirectos de producción). Asimismo, cuenta con la vía Ramiro Prialé como una vía de acceso rápido para los proveedores y para las unidades de transporte propias que llevan los productos terminados hacia los clientes. Por estos motivos, la ubicación de la planta de producción es ventajosa, ya que cumple con varios criterios para una óptima localización.

En la figura 6, se observa la ubicación de la planta en el plano de Google Maps.

Figura 6. Ubicación de la empresa



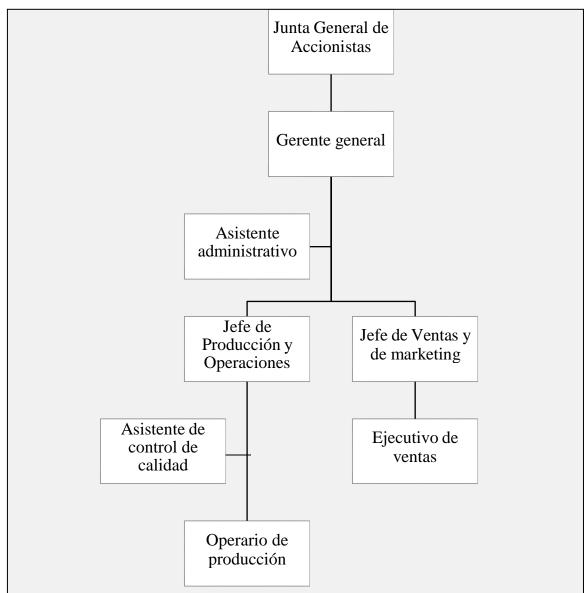

Nota: Adaptado de "Google Maps", por Google, 2023.

## Planos de la planta de producción.

A continuación, se presenta el plano de la planta de producción de la empresa Grupo Pacific Oil S.A.C. Este plano fue diseñado en el software AutoCad, por lo que presenta las dimensiones exactas de la planta de operaciones.

En el primer piso de la planta de producción se ubican las diferentes bombas utilizadas para movilizar los crudos de aceite, el agua y las diferentes mezclas de compuestos químicos utilizados en el proceso productivo. En el segundo piso de laempresa se ubican las maquinarias utilizadas en la Neutralización del producto en proceso, así como algunas maquinarias para el blanqueo y la refinación. En el tercer piso de la empresa se ubican algunas maquinarias utilizadas en el blanqueo, la refinación y el control de los procesos productivos. La disposición de cada una de estas maquinarias o equipos ha sido realizada al momento de diseñar la planta de producción, cumpliendo con todos los protocolos de seguridad y distribución estipulados en el informe de inspección técnica.

Figura 7. Plano de la planta de producción




Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

# Estructura organizacional de la empresa

A continuación, se presenta el organigrama general de la empresa, en función a los puestos de trabajo que existen en Grupo Pacific Oil S.A.C.

**Figura 8.** Organigrama



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

El organigrama presenta la estructura de la empresa en función a los distintos puestos de trabajo que se tienen. En primer lugar, se encuentra la Junta general de accionistas, conformada por todos los socios de Grupo Pacific Oil S.A.C. Luego de ello, se encuentra el gerente general, quien se encarga de supervisar todas las actividades de las

áreas de Producción y Ventas de la empresa, así como de realizar las funciones administrativas correspondientes. Luego se cuenta con 5 asistentes administrativos, los cuales se reparten para cumplir las funciones de asistente personal, asistente de recursos humanos, asistente logístico, asistente de almacén y asistente contable.

En el área de Producción se tiene al Jefe de Producción y Operaciones, quien está a cargo de hacer cumplir el plan de producción de la empresa en función a los requerimientos de la demanda. Asimismo, se cuenta con 3 asistentes de control de calidad, que son los encargados de tomar las muestras de los lotes en proceso y compararlos con los estándares previamente establecidos para los aceites fabricados. Finalmente, se tienen 7 operarios de producción, quienes se encargan de realizar las labores de refinamiento y envasado de los aceites producidos.

En el área de Ventas se tiene al Jefe de Ventas y Marketing, quien está a cargo de elaborar los planes de ventas de la empresa y de desarrollar las estrategias de marketing para hacerla conocida en el mercado. Asimismo, se cuenta con 3 ejecutivos de ventas, quienes se encargan de contactar con los clientes y cerrar las ventas de los aceites. En total, la empresa cuenta con 21 empleados distribuidos entre las tres áreas previamente mencionadas.

### Definición del problema de investigación

Durante el periodo 2022, se han identificado elevados niveles de reprocesos en la planta de producción de Grupo Pacific Oil S.A.C., los cuales parecen estar relacionados principalmente con las etapas de refinado y envasado de productos. Los porcentajes de reprocesos mensuales hallados en el periodo 2022 se muestran en la siguiente figura.

Nivel de reprocesos 18.00% 17.30% 17.50% 16.70% 17.00% 16.20% 16.50% 16.10% 16.00% 15.80% 15.80% 16.00% 15.50% 15.40% 15.50% 15.10% 14.90% 15.00% 14.60% 14.50% 14.00% 13.50% 13.00% MES

**Figura 9.**Porcentaje de reprocesos mensuales 2022

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

Según la figura 9, los niveles de reprocesos que se han obtenido mensualmente han fluctuado entre un 14.60% y un 17.30% en los meses de abril y diciembre del 2022, respectivamente. Estos altos niveles de reprocesos han generado una disminución significativa de la productividad, pues los niveles de esta variable oscilaron entre un valor mínimo de 70.07% y un valor máximo de 72.14% entre los meses de enero a diciembre del 2022. Esto representa un problema para la empresa, puesto que los objetivos organizacionales aspiran a alcanzar un nivel mínimo de productividad superior al 85%.

**Tabla 8.**Productividad mensual en el área de Producción

| Mes       | Productividad |
|-----------|---------------|
| Enero     | 70.88%        |
| Febrero   | 71.29%        |
| Marzo     | 71.04%        |
| Abril     | 70.45%        |
| Mayo      | 71.71%        |
| Junio     | 70.66%        |
| Julio     | 71.47%        |
| Agosto    | 71.32%        |
| Setiembre | 71.05%        |
| Octubre   | 70.07%        |
| Noviembre | 71.21%        |
| Diciembre | 72.14%        |

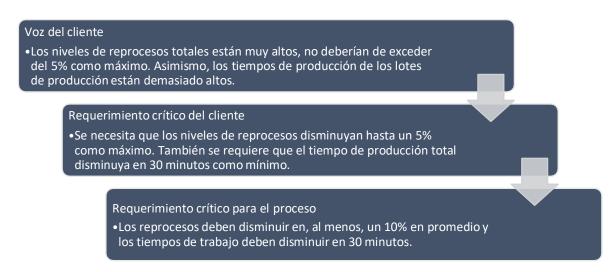
Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

El gráfico correspondiente que presenta los niveles de productividad y su evolución durante el periodo 2022 se muestra en la figura 10.

**Figura 10.** Evolución de la productividad 2022



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.


Debido a los valores presentados en la tabla 8 y en la figura 10, se reconoce la existencia de un problema en la empresa Grupo Pacific Oil S.A.C., puesto que no se están alcanzando las metas propuestas por el área, lo cual podría repercutir significativamente en los indicadores operativos y económicos de la empresa.

### Voz del cliente

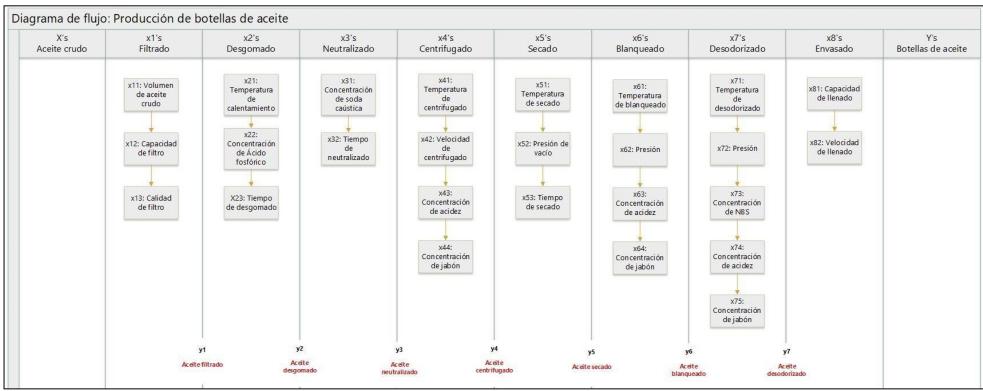
La voz del cliente es una herramienta que permite conocer qué es lo que el cliente, interno o externo, requiere de la empresa y cuál es su nivel de satisfacción con la misma (Otero y Marrod, 2017).

Para desarrollar la voz del cliente, se entrevistó al jefe de producción del área de Operaciones, quien indicó las siguientes necesidades del área gerencial (Cliente interno).

Figura 11. Voz del cliente



Nota: Elaboración propia.


La voz del cliente presentada demuestra que existe una necesidad para disminuir los reprocesos de trabajo en la empresa, pues esto no solamente impacta los resultados de productividad de la organización, sino que también genera inconvenientes con los tiempos de producción, los cuales aumentan.

Con respecto al cliente externo, actualmente la empresa no recaba información de estos clientes, pues no cuenta con un instrumento diseñado para tal fin. Sin embargo, se considera relevante que, en un futuro cercano, pueda plantearse un cuestionario que ayude a conocer más sobre los requerimientos de los clientes finales.

# Diagrama de bloques

A continuación, se detalla el Diagrama de flujo de todas las actividades desarrolladas durante el proceso de fabricación de las botellas de aceite de 1 litro elaboradas en la empresa Grupo Pacific Oil S.A.C.

**Figura 12.** *Diagrama de bloques* 



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

El diagrama de flujo detalló cada una de las etapas del proceso productivo y cada una de las variables de entrada que se deben considerar al momento de desarrollar las etapas de producción.

De acuerdo con este diagrama, el proceso inicia con la etapa de filtrado, en el que se filtra el aceite crudo que llega de la empresa por parte de los proveedores. Luego de ello, se pasa a la etapa de desgomado, que es la etapa donde se separan las gomas o fosfolípidos del producto inicial. Posteriormente, se procede a realizar el neutralizado a fin de eliminar los ácidos grasos a través de la saponificación. Luego se realiza el centrifugado, a fin de separar los aceites de los compuestos hidrofilicos a través del agua blanda y caliente. Posterior a ello sigue el secado, en el que se separa el agua libre del aceite a través de un secado al vacío. El proceso continúa con el blanqueado, en el que se mejora el color del aceite, a fin de que se vea uniforme y retirar los carotenoides, xantofilas y clorofila. Luego de ello, se realiza el desodorizado, en el que se realiza un arrastre a valor a fin de eliminar los componentes volátiles indeseados del aceite. Finalmente, se realiza el envasado, en el que se llenan las presentaciones de aceite en función a los volúmenes requeridos.

### **Diagrama SIPOC**

De acuerdo con Cañedo et al. (2012), el SIPOC es una técnica que ayuda a establecer las etapas individuales del proceso de trabajo, los suministradores de entradas de cada etapa, cuáles son las entradas que ingresan a cada etapa, las salidas de cada una de las etapas evaluadas y los clientes, internos o externos, a quienes les llegan las salidas de cada etapa de trabajo.

Figura 13. Diagrama SIPOC

| Supplier                                                                                           |                        | Inputs                                                                                                                                      | Process            | Ou                  | tputs                                                                                                                            | Customers            |
|----------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                    |                        |                                                                                                                                             |                    | 3.                  | •                                                                                                                                |                      |
|                                                                                                    |                        |                                                                                                                                             | Inicio del Proceso |                     |                                                                                                                                  |                      |
| Proveedor                                                                                          | Entradas               | Requisitos de entrada                                                                                                                       |                    | Salidas             | Requisitos de salida                                                                                                             | Cliente              |
| Proveedor de soya cruda                                                                            | Aceite crudo           | Lote de producción. Fecha<br>de fabricación. Volumen.                                                                                       | Filtrado           | Aceite filtrado     | Fecha de filtrado.<br>Volumen de filtrado.<br>Matriz de filtro.                                                                  | Área de desgomado    |
| Área de filtrado. Proveedor<br>de ácido fosfórico                                                  | Aceite filtrado        | Aceite filtrado: Fecha de<br>filtrado. Volumen de filtrado.<br>Matriz de filtro. Ácido<br>fosfórico: Lote de<br>fabricación, concentración. | Desgomado          | Aceite desgomado    | Concentración de<br>ácido fosfórico<br>utilizado.                                                                                | Área de neutralizado |
| Área de desgomado.<br>Proveedor de soda caústica                                                   | Aceite<br>desgomado    | Aceite desgomado:<br>Concentración de ácido<br>fosfórico utilizado. Soda<br>caústica: Lote de<br>fabricación, concentración.                | Neutralizado       | Aceite neutralizado | Concentración de<br>soda caústica.<br>Tiempo de<br>neutralizado                                                                  | Área de centrifugado |
| Área de neutralizado.<br>Proveedor de cilindro de<br>estampado. Proveedor de<br>pasta de estampado | Aceite<br>neutralizado | Aceite neutralizado:<br>Concentración de soda<br>caústica. Tiempo de<br>neutralizado.                                                       | Centrifugado       | Aceite centrifugado | Temperatura de<br>centrifugado.<br>Velocidad de<br>centrifugado.<br>Concentración de<br>acidez. Concentración<br>de jabón        | Área de secado       |
| Área de centrigugado.                                                                              | Aceite<br>centrifugado | Temperatura de<br>centrifugado. Velocidad de<br>centrifugado. Concentración<br>de acidez. Concentración<br>de jabón                         | Secado             | Aceite secado       | Temperatura de<br>secado. Presión de<br>vacío. Tiempo de<br>secado                                                               | Área de blanqueado   |
| Área de secado                                                                                     | Aceite secado          | Temperatura de secado.<br>Presión de vacio. Tiempo<br>de secado                                                                             | Blanqueado         | Aceite blanqueado   | Temperatura de<br>blanqueado. Presión.<br>Concentración de<br>acidez. Concentración<br>de jabón                                  | Área de desodorizado |
| Área de blanqueado.<br>Proveedor de NBS                                                            | Aceite<br>blanqueado   | Temperatura de<br>blanqueado. Presión.<br>Concentración de acidez.<br>Concentración de jabón                                                | Desodorizado       | Aceite desodorizado | Temperatura de<br>desodorizado.<br>Presión.<br>Concentración de<br>NBS. Concentración<br>de acidez.<br>Concentración de<br>jabón | Área de envasado     |
| Área de desodorizado                                                                               | Aceite<br>desodorizado | Temperatura de<br>desodorizado. Presión.<br>Concentración de NBS.<br>Concentración de acidez.<br>Concentración de jabón                     | Envasado           | Botellas de aceite  | Lote de producción.<br>Fecha de vencimiento                                                                                      | Cliente externo.     |
|                                                                                                    |                        |                                                                                                                                             | Fin del Proceso    |                     |                                                                                                                                  |                      |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

La matriz SIPOC realizada ayudó a conocer, en profundidad, el trabajo que se realiza en cada una de las etapas del proceso productivo del aceite, pues no solo se estudiaron las diversas etapas del proceso, sino que se determinaron a los proveedores de insumos, las entradas a los procesos, los requisitos de entrada de los insumos, las salidas de los procesos, los requisitos de salida de los insumos y los clientes de cada etapa.

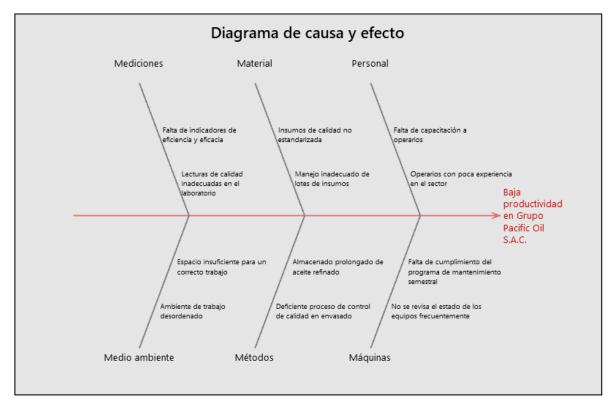
### Plan de comunicación

A continuación, se presenta el plan de comunicación que se seguirá para el desarrollo del DMAIC Six Sigma.

Plan de Comunicación

**Tabla 9.** *Plan de comunicación* 

| Pian de Comunicación                   |                                                                                                                                           |                                                                  |                                |                       |                                     |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|-----------------------|-------------------------------------|--|--|--|--|--|
| APLICA(<br>PRODUCTIV                   | APLICACIÓN DE LA METODOLOGÍA SIX SIGMA PARA INCREMENTAR LA PRODUCTIVIDAD EN EL ÁREA DE PRODUCCIÓN DE GRUPO PACIFIC OIL S.A.C., LIMA, 2022 |                                                                  |                                |                       |                                     |  |  |  |  |  |
| Objetivo de la sesión                  | Mensaje clave                                                                                                                             | Público<br>objetivo                                              | Frecuencia<br>de reunión       | Tiempo de<br>duración | Responsable                         |  |  |  |  |  |
| Kick off                               | Inicio del<br>proyecto Six<br>Sigma                                                                                                       | Jefe de<br>producción y<br>trabajadores<br>del área<br>operativa | 1 vez                          | 1 hora                | Diana Andrea<br>Cabezudo<br>Huaraca |  |  |  |  |  |
| Desarrollo del<br>Proyecto             | Información<br>crítica sobre<br>avances<br>semanales                                                                                      | Jefe de<br>producción y<br>trabajadores<br>del área<br>operativa | 1 vez por<br>semana            | 1 hora                | Diana Andrea<br>Cabezudo<br>Huaraca |  |  |  |  |  |
| Asesorías para colaboradores           | Capacitaciones                                                                                                                            | Jefe de<br>producción y<br>trabajadores<br>del área<br>operativa | 1 vez al<br>mes                | 10 horas              | Diana Andrea<br>Cabezudo<br>Huaraca |  |  |  |  |  |
| Revisión de<br>culminación de<br>fases | Término de<br>fases de<br>DMAIC Six<br>Sigma                                                                                              | Jefe de<br>producción y<br>trabajadores<br>del área<br>operativa | Al término<br>de cada<br>etapa | 2 horas               | Diana Andrea<br>Cabezudo<br>Huaraca |  |  |  |  |  |
| Culminación<br>del proyecto            | Fin del DMAIC<br>Six Sigma                                                                                                                | Jefe de<br>producción y<br>trabajadores<br>del área<br>operativa | 1 vez                          | 2 horas               | Diana Andrea<br>Cabezudo<br>Huaraca |  |  |  |  |  |


Nota: Elaboración propia.

#### Medir

# Diagrama de Ishikawa

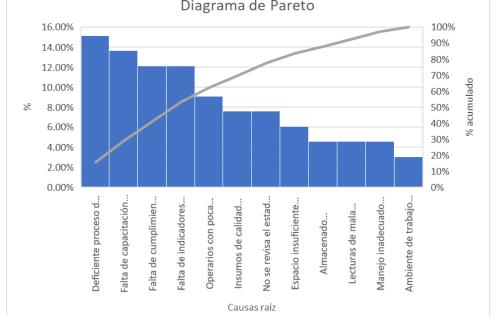
Para identificar las posibles causas de los altos niveles de reprocesos y de la baja productividad de la empresa, se desarrolló un diagrama de Ishikawa, el cual fue elaborado en conjunto con el jefe de producción, lo que facilitó la identificación de posibles causas raíz.

**Figura 14.**Diagrama de Ishikawa: Baja productividad



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De acuerdo con la figura 14, la baja productividad está relacionada con factores como la falta de capacitación de los operarios o la poca experiencia con la que cuentan cuando inician sus labores en Grupo Pacific Oil S.A.C. Con relación a los materiales, algunos insumos provienen de proveedores distintos, por lo que la calidad no siempre es estándar; el manejo inadecuado de los lotes de insumos es otro inconveniente, pues no se lleva un inventario adecuado que permita utilizar primero los inventarios más antiguos. Con respecto a las mediciones, no se cuenta con indicadores de eficiencia y eficacia, y no se


realizan lecturas de calidad adecuadas en el laboratorio. Al respecto del ambiente, el espacio es insuficiente para realizar de forma óptima el trabajo y, en algunas ocasiones, se observa un ambiente de trabajo desordenado. Con relación a los métodos, el almacenado prolongado del aceite refinado no siempre es adecuado, pues podrían ocurrirescenarios de contaminación que generen reprocesos; asimismo, el deficiente proceso de control de calidad del envasado genera que, en ocasiones, no se detecten adecuadamentelos envases o tapas defectuosas, lo que ocasiona una mayor tasa de reprocesos. Finalmente, con relación a las máquinas, la falta de cumplimiento del programa semestral de mantenimiento genera, en ocasiones, problemas de rendimiento; además, la falta de revisión frecuente de los equipos dificulta la identificación de desperfectos menores.

## Diagrama de Pareto.

Figura 15.

Luego de identificados estos factores, se llevó a cabo una ponderación de las causas raíz, con ayuda del jefe de producción de la empresa, obteniéndose los siguientes resultados en la figura 15.

Diagrama de Pareto: Baja productividad Diagrama de Pareto 16.00% 14.00% 12.00%



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De este modo, se observan que las principales causas que parecen estar mermando la productividad son el deficiente proceso de control de calidad en el envasado, lo que genera los reprocesos; la falta de capacitación de los operarios, quienes cometen errores al momento de realizar sus funciones en la línea de producción; la falta de cumplimiento del programa de mantenimiento semestral y la falta de indicadores de eficiencia y eficacia en la empresa.

# Matriz de Análisis Modal de Fallos y Efectos (AMFE).

De acuerdo con Consuegra, "la metodología AMFE es entendida como una técnica y alternativa para la gestión de riesgos que permite ser dirigida al análisis de identificación, evaluación y prevención de posibles fallos" (2015, p. 39).

A continuación, se desarrolla la matriz AMFE del proceso productivo, a fin de evaluar cuáles podrían ser las etapas que podrían estar generando las causas anteriormente descritas con otras herramientas.

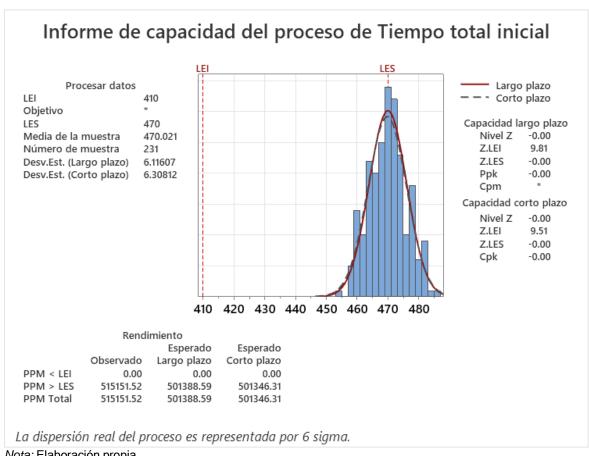
**Tabla 10.** *Matriz AMFE* 

| Proceso de producción |                                                       |                            |                                                                               |                                                              |               |                                                                                  |                |                                           |                    |                                                     |  |
|-----------------------|-------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|----------------|-------------------------------------------|--------------------|-----------------------------------------------------|--|
| Paso del<br>Proceso   | Función                                               | Salida<br>o<br>Entrad<br>a | Modo de<br>falla<br>potencial                                                 | Efecto de<br>falla<br>potencial                              | Severida<br>d | Causa de<br>falla<br>potencial                                                   | Frecuenci<br>a | Control                                   | Detectabilida<br>d | Número<br>de<br>priorida<br>d de<br>riesgo<br>(RPN) |  |
| Filtrado              | Realizar un<br>filtrado inicial<br>al aceite<br>crudo | Entrada                    | Filtrado<br>insuficiente,<br>que permite<br>el paso de<br>muchas<br>impurezas | Aceite<br>filtrado sucio,<br>no apto para<br>el<br>desgomado | 6             | Filtro con<br>desperfectos                                                       | 5              | Sin<br>control                            | 4                  | 120                                                 |  |
| Desgomado             | Separación<br>de gomas<br>(fosfolípidos)              | Entrada                    | Falta de<br>separación<br>de gomas                                            | Aceite con fosfolípidos adheridos                            | 6             | Falla en el<br>sensor de<br>temperatura                                          | 5              | Revisió<br>n<br>mensua<br>I del<br>sensor | 5                  | 150                                                 |  |
| Neutralizado          | Eliminación<br>de ácidos<br>grasos                    | Entrada                    | Falla en el<br>proceso de<br>saponificació<br>n                               | Aceite con<br>ácidos<br>grasos<br>incluidos                  | 6             | Concentració<br>n inadecuada<br>de soda<br>cáustica                              | 6              | Sin<br>control                            | 5                  | 180                                                 |  |
| Centrifugado          | Separación<br>de<br>compuestos<br>hidrofílicos        | Entrada                    | Falta de<br>separación<br>de<br>componentes<br>hidrofílicos                   | Componente<br>s hidrofílicos<br>en aceite                    | 5             | Falla en el<br>sensor de<br>temperatura y<br>en el motor<br>de<br>centrifugación | 6              | Revisió<br>n<br>mensua<br>I del<br>sensor | 5                  | 150                                                 |  |

| Secado           | Separación<br>de agua libre                                      | Entrada | Agua libre<br>mezclada<br>con aceite                | Tono o color incorrecto                                                                    | 6 | Falta de<br>mantenimient<br>o a la<br>secadora al<br>vacío y error      | 6 | Sin<br>control                            | 5 | 180 |
|------------------|------------------------------------------------------------------|---------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------|---|-------------------------------------------|---|-----|
| Blanqueado       | Eliminación<br>de<br>carotenoides<br>, xantofilas y<br>clorofila | Entrada | Aceite con<br>pigmentos<br>vegetales<br>incluidos   | Aceite de color no uniforme                                                                | 5 | de presión. Falla en el sensor de presión y en el sensor de temperatura | 5 | Revisió<br>n<br>mensua<br>I del<br>sensor | 4 | 100 |
| Desodorizad<br>o | Eliminación<br>de<br>componente<br>s volátiles                   | Entrada | Aceite con<br>componentes<br>volátiles<br>incluidos | Aceite con<br>olores<br>fuertes y<br>divergentes<br>según lote,<br>no apto para<br>consumo | 5 | Falla en el<br>destilador de<br>aceites                                 | 6 | Sin<br>control                            | 4 | 120 |
| Envasado         | Envasado<br>en<br>presentación<br>final                          | Entrada | Proceso de<br>llenado de<br>aceite<br>variable      | Volúmenes<br>incorrectos<br>de envasado                                                    | 7 | Pistones de presión descalibrados                                       | 7 | Sin<br>control                            | 4 | 196 |

Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

De acuerdo con los resultados de la matriz AMFE, las etapas del proceso más críticas, que podrían estar generando los problemas en el área de producción con respecto a la productividad y los reprocesos, son la etapa de neutralizado, secado y envasado.


## Nivel Sigma.

De acuerdo con Salazar, "el nivel sigma es un indicador de variación el cual corresponde a cuantas desviaciones estándar caben entre los límites de especificación del proceso" (2019, p. 1).

A continuación, se realizó el cálculo del nivel sigma del proceso, a fin de conocer qué tan bien se encuentra dentro de las especificaciones del área de Producción y la capacidad de este proceso productivo.

Este informe de capacidad del proceso de tiempo total se realizó a partir de una muestra de 231 procesos, tomada entre los meses de enero y diciembre del 2022, utilizando el software Minitab.

Figura 16. Nivel Sigma inicial



Nota: Elaboración propia.

61

De acuerdo con los resultados obtenidos, el valor del nivel Z inicial es de -0.82; por

lo tanto, el valor del nivel sigma es el siguiente:

$$Nivel\ sigma = Nivel\ Z + 1.5 = -0.00 + 1.5 = 1.50$$

El nivel sigma hallado es bajo, por lo que se determina que el proceso necesita de

mejoras, a fin de disminuir los niveles de errores, mejorar los tiempos de producción y la

productividad.

Analizar

Pruebas de hipótesis

A continuación, se demostrará, a través de pruebas de hipótesis, cuáles son las

principales causas raíz que guardan una relación significativa con los tiempos totales de

trabajo. Para las pruebas de hipótesis solo se evaluaron los tres principales procesos

identificados en la matriz AMFE, que fueron el Neutralizado, el Secado y el Envasado, pues

son los que mayor nivel de prioridad de riesgo tienen en el proceso productivo de los

aceites. A continuación, se detallan cada una de las tres pruebas de hipótesis realizadas,

en las que se comparan los tiempos de las etapas mencionadas con el tiempo total de

producción.

Neutralizado y tiempo total

a) Planteamiento de las Hipótesis:

Ho: No existe relación significativa entre el tiempo de neutralizado y el tiempo total

de producción.

H1: Existe relación significativa entre el tiempo de neutralizado y el tiempo total de

producción.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 11

**Tabla 11.**Prueba de correlación: Neutralizado y Tiempo total de producción

| Muestra 1    | Muestra 2    | N   | Correlación | IC de 95% para ρ | Valor p |
|--------------|--------------|-----|-------------|------------------|---------|
| Tiempo total | Neutralizado | 231 | 0.406       | (0.292; 0.508)   | 0.000   |

Nota: Elaboración propia.

d) Conclusión: De acuerdo con los resultados de la tabla 11, el p-valor (0.000) es menor que el nivel de significancia α (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que existe una relación significativa entre el tiempo de neutralizado y el tiempo total de producción. El grado de relación entre ambas variables de positivo moderado.

# Secado y tiempo total

a) Planteamiento de las Hipótesis:

Ho: No existe relación significativa entre el tiempo de secado y el tiempo total de producción.

H1: Existe relación significativa entre el tiempo de secado y el tiempo total de producción.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 12.

**Tabla 12.**Correlaciones en parejas de Pearson – Secado y Tiempo total de producción

| Muestra 1    | Muestra 2 | N   | Correlación | IC de 95% para ρ | Valor p |
|--------------|-----------|-----|-------------|------------------|---------|
| Tiempo total | Secado    | 231 | 0.377       | (0.260; 0.482)   | 0.000   |

Nota: Elaboración propia.

d) Conclusión: De acuerdo con los resultados de la tabla 12, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que existe una relación significativa entre el tiempo de secado y

el tiempo total de producción. El grado de relación entre ambas variables de positivo bajo.

## Envasado y tiempo total

a) Planteamiento de Hipótesis:

Ho: No existe relación entre el tiempo de envasado y el tiempo total de producción.

H1: Existe relación entre el tiempo de envasado y el tiempo total de producción.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 13.

**Tabla 13.**Correlaciones en parejas de Pearson – Envasado y Tiempo total de producción

| Muestra 1    | Muestra 2 | N   | Correlación | IC de 95% para ρ | Valor p |
|--------------|-----------|-----|-------------|------------------|---------|
| Tiempo total | Envasado  | 231 | 0.559       | (0.464; 0.642)   | 0.000   |

Nota: Elaboración propia.

d) Conclusión: De acuerdo con los resultados de la tabla 13, el p-valor (0.000) es menor que el nivel de significancia α (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que existe una relación significativa entre el tiempo de envasadoy el tiempo total de producción. El grado de relación entre ambas variables de positivo moderado.

De este modo, los resultados de la etapa Analizar se resumen de la siguiente manera en la tabla 14.

**Tabla 14.** *Resultados etapa Analizar* 

| Causa raíz potencial | Test de Verificación                                                                                                                                                                      | Resultado del Test                    | Conclusión       |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|
| Etapa Neutralizado   | Ho: No existe relación entre el tiempo de neutralizado y el tiempo total de producción. H1: Existe relación entre el tiempo de neutralizado y el tiempo total de producción Ho: No existe | Se rechaza la Ho y se<br>acepta la H1 | Sí es causa raíz |
|                      | relación entre el                                                                                                                                                                         | Se rechaza la Ho y se                 |                  |
| Etapa Secado         | tiempo de secado y<br>el tiempo total de<br>producción<br>H1: Existe relación<br>entre el tiempo de<br>secado y el tiempo<br>total de producción<br>Ho: No existe                         | acepta la H1                          | Sí es causa raíz |
| Etapa Envasado       | relación entre el tiempo de envasado y el tiempo total de producción H1: Existe relación entre el tiempo de envasado y el tiempo total de producción                                      | Se rechaza la Ho y se<br>acepta la H1 | Sí es causa raíz |

De este modo, se abordarán las problemáticas encontradas en las etapas mencionadas.

# Mejorar

En esta sección, para cada una de las etapas, se determinarán las acciones que permitirán hacer las mejoras para el proceso.

# Etapa de Neutralizado

Para llevar a cabo el proceso correcto de neutralizado, se tomarán las siguientes medidas, las cuales serán enseñadas en el plan de capacitación presentado posteriormente.

**Tabla 15.** *Medidas para la etapa de neutralizado* 

|          | Desarrollar los cálculos exactos de               |
|----------|---------------------------------------------------|
|          | concentración para el neutralizado y que estos    |
|          | valores sean incorporados al proceso de           |
|          | trabajo. Para ello, se desarrollará una plantilla |
|          | en Excel que permita realizar los cálculos        |
|          | exactos de los insumos necesarios para el         |
|          | trabajo de los lotes de producción. Este Excel    |
| Acción 1 | será sencillo de utilizar y solo requerirá de     |
| ACCIOIT  | colocar los volúmenes del lote de producción y    |
|          | algunas variables de ingreso.                     |
|          | El cálculo apropiado de los insumos se            |
|          | enseñará a los operarios de producción,           |
|          | quienes serán los encargados de realizar las      |
|          | mezclas durante el proceso productivo. La         |
|          | desviación de esta concentración no puede         |
|          | ser mayor a 0.5% del valor final.                 |
|          | Tomar muestras de la mezcla formada y             |
| Acción 2 | llevarlas a laboratorio antes de la continuación  |
|          | del proceso productivo.                           |
|          | Verificar que la velocidad de agitación sea       |
|          | adecuada para evitar la emulsificación de la      |
|          | mezcla.                                           |
|          | El rango de velocidad apropiado está entre las    |
| Acción 3 | 9 y 11 RPM. Este debe ser monitoreado en la       |
|          | pantalla digital del equipo. En caso ocurra un    |
|          | error, deberá pararse el proceso de agitación     |
|          | para evitar inconvenientes en las siguientes      |
|          |                                                   |

# Etapa de Secado.

Para llevar a cabo el proceso correcto de secado, se tomarán las siguientes medidas, las cuales serán enseñadas en el plan de capacitación presentado posteriormente.

**Tabla 16.** *Medidas para la etapa de secado* 

|           | Realizar un plan de mantenimiento preventivo   |
|-----------|------------------------------------------------|
| Acción 1  | para la secadora de vacío, pues es una de las  |
|           | maquinarias con mayores niveles de falla.      |
|           | Revisar los indicadores de presión de la       |
|           | secadora de vacío, de modo que pueda           |
|           | realizarse el proceso de secado                |
|           | correctamente.                                 |
| Acción 2  | En la pantalla digital del equipo, se debe     |
|           | verificar que la presión oscile entre 1 y 1.2  |
|           | atmósferas. Esta evaluación debe realizarse al |
|           | inicio del proceso y debe comprobarse cada 5   |
|           | minutos hasta la culminación de esta etapa.    |
| A. (1/10) | Tomar una muestra para realizar el control de  |
| Acción 3  | calidad oportuno, post proceso de secado.      |
|           |                                                |

Nota: Elaboración propia.

# Etapa de Envasado

Para llevar a cabo el proceso correcto de envasado, se tomarán las siguientes medidas, las cuales serán enseñadas en el plan de capacitación presentado posteriormente.

**Tabla 17.** *Medidas para la etapa de envasado* 

|           | Realizar un plan de mantenimiento preventivo |
|-----------|----------------------------------------------|
| Acción 1  | para la máquina envasadora, pues             |
| Acción 1  | ocasionalmente existen problemas con la      |
|           | regulación del llenado.                      |
|           | Calibrar los pistones de llenado             |
| Acción 2  | semanalmente, para verificar que el          |
| Acción 2  | movimiento realizado sea correcto y con la   |
|           | fuerza adecuada, evitando estancamientos.    |
| A/ ( 51 ) |                                              |

# Programa de capacitación a los trabajadores

A continuación, se presenta el plan de capacitaciones que será realizado para la enseñanza de las diferentes medidas propuestas.

# I. Objetivo del programa

Desarrollar las actividades que se realizarán como parte del programa de capacitación de la empresa, referente a las labores de producción de aceites en la empresa Grupo Pacific Oil S.A.C. El desarrollo de estas actividades reforzará los conocimientos técnicos y las capacidades prácticas de los operarios del área.

# II. Alcance del programa

Este programa estará dirigido a todos los colaboradores del área de Producción, con mayor énfasis en aquellos trabajadores que inician labores en la empresa.

# III. Responsable del programa

El responsable de este programa es el jefe de Producción, pues estará a cargo de verificar que las temáticas y tiempos de capacitación sean las correctas.

# IV. Etapas del Programa

## 4.1. Programación

Se definirá un cronograma para la ejecución de las capacitaciones, el cual seguirá una calendarización fija. Además, se consideraron los siguientes factores:

- Temas por tratar: Maquinarias y equipos del área de Producción, con mayor énfasis en los correspondientes a las etapas de neutralizado, secado y envasado. Etapas del proceso productivo del aceite y controles de calidad.
- Fecha de las actividades de capacitación, horas por capacitación y número de trabajadores capacitados.

# 4.2. Ejecución

Las capacitaciones serán realizadas por el supervisor de producción y por el supervisor de calidad, en función a las temáticas a tratar por sesión. Si fuera necesaria la participación de un capacitador externo, se realizarán las coordinaciones necesarias para su realización. Todos los trabajadores llenarán el formato C-01, el cual permitirá registrar la asistencia de los colaboradores a las capacitaciones. Este formato está colocado en el anexo 2.

Los responsables de las capacitaciones diseñarán una evaluación de aspectos técnicos y prácticos sobre los temas estudiados, de modo que se pueda comprobar el éxito de la capacitación.

## 4.3. Registro de asistencia y resultado de evaluaciones

Para registrar la asistencia de los trabajadores al programa de capacitaciones, se pedirá que estos llenen el formato C-01, en el cual especificarán toda su información personal. Este mismo formato servirá para colocar las calificaciones finales de cada uno de ellos. Al final el programa, se enviará el formato C-01 al jefe de producción, quien se encargará de registrar los resultados para presentarlos posteriormente al gerente general de la empresa.

## 4.4. Seguimiento

Esta última etapa del programa se realiza para evaluar y definir las oportunidades de mejora, en relación con los tópicos teóricos y prácticos que serán realizados en las capacitaciones. De este modo, el programa de capacitaciones se actualizará continuamente, en función a los aspectos más relevantes para la empresa, así como en función a los avances tecnológicos implementados.

**Evaluación:** Para que un trabajador pueda ser considerado como aprobado, deberá obtener una calificación superior a los 40 puntos (2/3 partes de la calificación total).

Si el trabajador capacitado desaprobara la evaluación, se le dará una retroalimentación sobre los puntos débiles que tuvo en su evaluación, a fin de que termine de completar su entendimiento sobre las maquinarias y los procesos. Posteriormente, se le volverá a evaluar, a fin de que pueda aprobar el programa de capacitación.

Cobertura: La cobertura permite determinar el porcentaje de asistencia de los trabajadores a las capacitaciones brindadas. En el caso del presente programa, se considera que la cobertura es adecuada con una asistencia de mínimo el 80% del total de trabajadores invitados. De este modo, se asegura que la información de las capacitaciones llegue a casi todo el personal del área.

Como se mencionó previamente, el plan de capacitaciones será revisado cada seis meses, con la finalidad de actualizar su contenido para un mejor aprovechamiento de las sesiones.

## 4.5. Indicadores

El índice de cumplimiento permite conocer cuántas capacitaciones fueron realizadas de forma efectiva, con respecto a las capacitaciones programadas al inicio del año.

 $\label{eq:ndice} \text{Indice de cumplimiento} = \frac{\textit{N\'umero de capacitaciones realizadas}}{\textit{N\'umero de capacitaciones programadas}} x 100\%$ 

El índice de cobertura permite conocer el porcentaje de personas que fueron capacitadas con respecto al total de trabajadores del área.

$$\label{eq:ndice} \textit{Indice de cobertura} = \frac{\textit{N\'umero de trabajadores capacitados}}{\textit{N\'umero de trabajadores totales}} x 100\%$$

# V. Actividades y registros

A continuación, se detallarán cada una de las actividades a realizar en las capacitaciones, así como sus métodos de evaluación correspondientes.

**Tabla 18.**Cronograma de capacitaciones

| N° de     | Tema a tratar          | Responsable             | Fecha de realización   | Duración | Competencia evaluada     | Adquisición de   |
|-----------|------------------------|-------------------------|------------------------|----------|--------------------------|------------------|
| actividad |                        |                         | de actividad           |          |                          | la competencia   |
| 1         | Maquinarias y equipos  | Jefe de producción      | Primeros dos días de   | 3 horas  | Conocimientos técnicos   | Puntaje: 1 al 20 |
|           | usados en el           |                         | los meses de Enero,    |          | sobre la estructura de   |                  |
|           | refinamiento y         |                         | Abril, Julio y Octubre |          | maquinarias y equipos.   |                  |
|           | envasado de aceites    |                         |                        |          | Funcionamiento práctico. |                  |
| 2         | Etapas de producción   | Jefe de producción      | Tercer día de los      | 2 horas  | Conocimientos técnicos   | Puntaje: 1 al 20 |
|           | para el refinamiento y |                         | meses de Enero,        |          | sobre las etapas de      |                  |
|           | envasado de aceites    |                         | Abril, Julio y Octubre |          | producción. Desarrollo   |                  |
|           |                        |                         |                        |          | práctico de las etapas.  |                  |
| 3         | Control de calidad en  | Asistente de control de | Cuarto día de los      | 2 horas  | Conocimientos técnicos   | Puntaje: 1 al 20 |
|           | las etapas de          | calidad                 | meses de Enero,        |          | sobre la calidad del     |                  |
|           | Neutralizado, Secado   |                         | Abril, Julio y Octubre |          | proceso. Aspectos        |                  |
|           | y Envasado.            |                         |                        |          | prácticos de control.    |                  |
|           | Verificación de        |                         |                        |          |                          |                  |
|           | equipos.               |                         |                        |          |                          |                  |

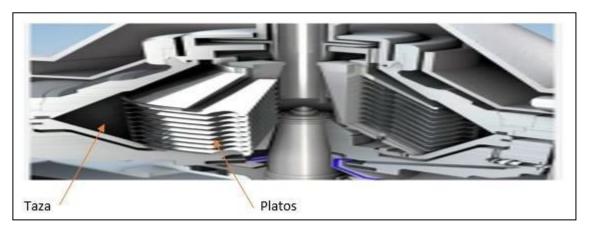
# Desarrollo de un plan de mantenimiento de maquinarias y equipos del área de Producción

A continuación, se presenta un plan de mantenimiento propuesto para mejorar las condiciones de las maquinarias de producción.

**Tabla 19.** *Plan de mantenimiento* 

| Maquinaria/equipo                          | Cantidad | Enero | Febrero | Marzo | Abril | Mayo | Junio | Julio | Agosto | Setiembre | Octubre | Noviembre | Diciembre |
|--------------------------------------------|----------|-------|---------|-------|-------|------|-------|-------|--------|-----------|---------|-----------|-----------|
| Ahorrador vertical                         | 1        | Χ     |         |       |       |      |       | Χ     |        |           |         |           |           |
| Atrapador                                  | 2        | Χ     |         |       | Χ     |      |       | Χ     |        |           | Χ       |           |           |
| Cabina combinada de separación aceite-agua | 2        | Χ     |         |       | Χ     |      |       | Χ     |        |           | Χ       |           |           |
| Caldera                                    | 2        | Χ     |         |       | Χ     |      |       | Χ     |        |           | Χ       |           |           |
| Calentador de aceite                       | 5        | Χ     |         |       |       |      |       | Χ     |        |           |         |           |           |
| Centrífuga                                 | 2        |       | Χ       |       |       |      |       |       | Χ      |           |         |           |           |
| Compresor de aire                          | 1        |       | Χ       |       |       |      |       |       | Χ      |           |         |           |           |
| Condensador                                | 2        |       | Χ       |       |       | Χ    |       |       | Χ      |           |         | Χ         |           |
| Deodorizador                               | 1        |       | Χ       |       |       |      |       |       | Χ      |           |         |           |           |
| Distribuidor de aceite                     | 3        |       | Χ       |       |       |      |       |       | Χ      |           |         |           |           |
| Distribuidor de agua                       | 1        |       | Χ       |       |       |      |       |       | Χ      |           |         |           |           |
| Distribuidor de vapor                      | 1        |       |         | Χ     |       |      |       |       |        | Χ         |         |           |           |
| Elevador de arcilla blanqueadora           | 1        |       |         | Χ     |       |      |       |       |        | Χ         |         |           |           |
| Enfriador de ácidos grasos                 | 1        |       |         | Χ     |       |      | Χ     |       |        | Χ         |         |           | Χ         |
| Envasadora                                 | 1        |       |         | Χ     |       |      |       |       |        | Χ         |         |           |           |
| Filtro                                     | 6        |       |         | Χ     |       |      | Χ     |       |        | Χ         |         |           | Χ         |
| Grúa eléctrica                             | 2        |       |         | Χ     |       |      |       |       |        | Χ         |         |           |           |
| Intercambiador de calor                    | 4        |       |         |       | Χ     |      |       |       |        |           | Χ       |           |           |
| Maquina secadora de aire                   | 1        |       |         |       | Χ     |      |       |       |        |           | Χ       |           |           |
| Mesa de lavado de discos                   | 1        |       |         |       | Χ     |      |       |       |        |           | Χ       |           |           |
| Mezclador multiefecto                      | 3        |       |         |       | Χ     |      |       |       |        |           | Χ       |           |           |
| Piscina lavadora de redes de filtros       | 1        | Χ     |         |       | Χ     |      |       | Χ     |        |           | Χ       |           |           |
| Secador al vacío                           | 1        |       |         |       | Χ     |      |       |       |        |           | Χ       |           |           |
| Separador de aceite-vapor                  | 1        |       | Χ       |       |       | Χ    |       |       | Χ      |           |         | Χ         |           |
| Separador vapor-agua                       | 1        |       | Χ       |       |       | Χ    |       |       | Χ      |           |         | Χ         |           |
| Sistema de generación de vacío             | 3        |       |         |       |       | Χ    |       |       |        |           |         | Χ         |           |
| Suavizador                                 | 1        |       |         |       |       | Χ    |       |       |        |           |         | Χ         |           |
| Supercalentador de vapor                   | 1        |       |         |       |       | Χ    |       |       |        |           |         | Χ         |           |
| Tanque industrial                          | 29       |       |         | Χ     |       |      | Χ     |       |        | X         |         |           | Χ         |
| Torre industrial                           | 5        |       |         |       |       |      | Χ     |       |        |           |         |           | Χ         |
| Tubo de cuantificación de arcilla          | 1        |       |         |       |       |      | Χ     |       |        |           |         |           | Χ         |
| Válvula de cuantificación de arcilla       | 1        |       |         |       |       |      | Χ     |       |        |           |         |           | Χ         |

Nota: Elaboración propia.


A continuación, se detallarán las características de los mantenimientos realizados a las principales maquinarias del proceso productivo, las cuales tienen que ser revisadas prioritariamente debido a su complejidad y al mayor tiempo que toma el desarrollo de sus mantenimientos:

## a) Maquinarias principales del Neutralizado:

Los equipos más importantes durante la etapa del Neutralizado son la Centrífuga y la Lavadora. Con el transcurrir del proceso de trabajo, ambas maquinarias tienden a retener una porción de los sólidos que separa por acción de las fuerzas centrifugas (Borra o también llamado jabón). Por ello, cada 130 toneladas trabajadas aproximadamente, se requiere la intervención de ambas maquinarias.

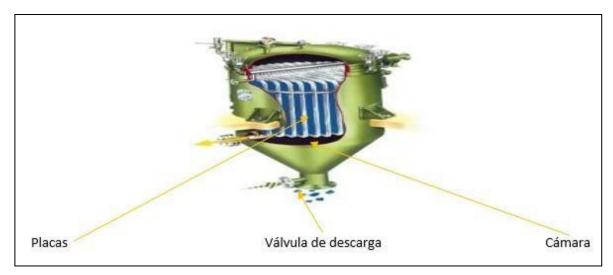
En este caso, se debe realizar un despiece de las mismas y realizar el retiro mecánico de los sólidos contenidos en la taza y los 100 platos que cada una contiene Posteriormente, se lava cada pieza interna con agua y jabón hasta la remoción completa de las impurezas, se rearma las centrifuga y la lavadora y se pone nuevamente en funcionamiento.

**Figura 17.** *Taza y platos de las maquinarias del Neutralizado* 



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

En la empresa, se cuenta con dos centrífugas, las cuales deben recibir mantenimiento de forma semestral, en los meses de febrero y agosto. Para cada


mantenimiento, es necesario invertir 12 Horas-hombre (H-H), lo cual genera un costo de mantenimiento de S/. 1,920.00 por ocasión. En el caso de la lavadora, solo se tiene una en la empresa y debe recibir un mantenimiento semestral en los meses de abril y octubre. Para cada mantenimiento, es necesario invertir 5 H-H, lo cual genera un costo de mantenimiento de S/.400.00. Las frecuencias de mantenimiento mencionadas corresponden a la recomendación de los fabricantes.

## b) Maquinarias principales del Blanqueado:

Para realizar el Blanqueado, se cuenta con par de filtros tipo "Niagara" para mantener la continuidad de los procesos. Uno de ellos se encuentra en operaciones mientras el otro se encuentra en estado de stand-by o en mantenimiento. Se realizan dos tipos de limpieza en este filtro: la primera, que consiste en una descarga por saturación de lodos debido a la adición continua de las tierras de blanqueo, que limita la filtración eficiente de los aceites procesados; esta se realiza cada 4 horas de operaciones. Cuando se cumple el plazo de operación, es necesario comenzar el mantenimiento del filtro, mientras se realiza el llenado del otro. El desalojo del aceite se realiza inyectando vapor a la cámara del filtro, lo que causa que los aceites sean desalojados del mismo, mientras las tierras gastadas se mantienen adheridas a las placas del filtro. Una vez sea retirado el aceite del mismo, se mantiene la carga de vapor al sistema por unos 20 minutos para arrastrar la mayor parte del aceite de las tierras y minimizar con ello pérdidas de aceite. Cumplido el tiempo, se abre la válvula neumática y se descarga la tierra seca en contenedores designados.

El segundo tipo de limpieza se realiza cada tres meses y consiste en retirar las placas del filtro, sumergirlas en una solución caliente (50°C) de soda al 25%, por unas seis horas. Luego, se retiran las placas de la solución una por una, para enjuagar con la hidrolavadora y, por último, se sumergen en solución de Ácido Cítrico al 25% para neutralizar (romper los enlaces de jabón) por un tiempo de dos horas.

**Figura 18.** *Mantenimiento maquinarias del Blanqueado* 

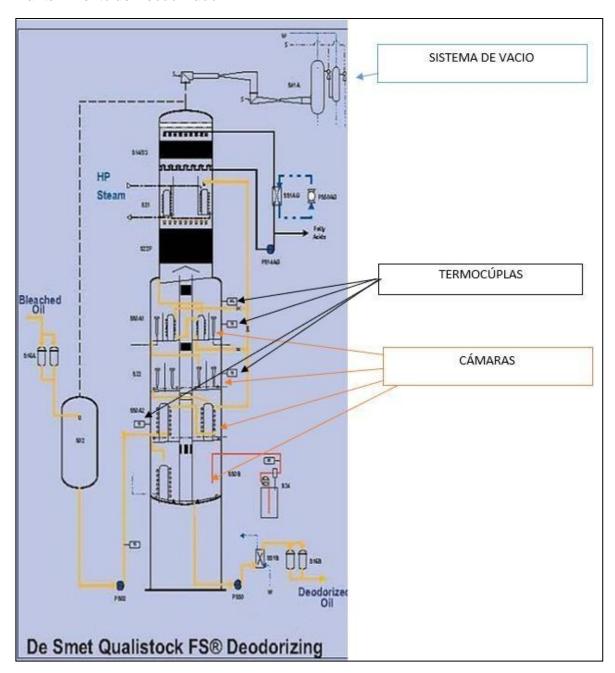


Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C..

En la empresa, se cuenta con dos filtros tipo "Niagara", los cuales deben recibir mantenimiento de forma trimestral, en los meses de marzo, junio, setiembre y diciembre. Para cada mantenimiento, es necesario invertir 10 Horas-hombre (H-H), lo cual genera un costo de mantenimiento de S/.1,600.00 por ocasión. Las frecuencias de mantenimiento mencionadas corresponden a la recomendación de los fabricantes.

#### c) Maquinarias principales para el Desodorizado:

En esta etapa, el equipo más importante es el Deodorizador, el cual tiene una frecuencia de limpieza semestral. Luego de las operaciones a temperatura general de 250°C, se procede al vaciado y posterior enfriamiento de esta maquinaria, a través del sistema de vacío generado por agua. Es importante mencionar que este sistema de vacío no se debe apagar ni tampoco se debe abrir el deodorizador hasta que no haya alcanzado la temperatura mínima de 50°C, ya que esto podría ocasionar un incendio.


Posteriormente, se realiza el retiro mecánico del aceite plastificado en las paredes del deodorizador, se completa el volumen de las cámaras con agua, para un enjuague inicial y retirar las impurezas. Luego, se prepara una solución de soda 25%, se calienta a 80°C y se carga el sistema nuevamente con la solución. Se mantiene el sistema en

recirculación por 12 horas manteniendo las temperaturas; luego de ello, se desaloja todo el volumen de soda del sistema y se realizan 2 enjuagues adicionales con agua limpia.

Una vez terminado este primer enjuague, se prepara una solución de Ácido Cítrico al 25%, se calienta a 80°C y se carga al sistema. Se mantiene en recirculación, manteniendo la temperatura inicial por un tiempo de 12 horas o hasta que en las muestras tomadas deje de aparecer resultados positivos para la prueba de jabón. Finalmente, se descarga la solución de Ácido Cítrico y se realiza un último enjuague con agua limpia.

En la empresa, se cuenta con un Deodorizador, el cual debe recibir mantenimiento de forma semestral, en los meses de febrero y agosto. Para cada mantenimiento, es necesario invertir 8 Horas-hombre (H-H), lo cual genera un costo de mantenimiento de S/.640 por ocasión. Las frecuencias de mantenimiento mencionadas corresponden a la recomendación de los fabricantes.

**Figura 19.** *Mantenimiento de Deodorizador* 



Nota: Elaboración propia a partir de la información proporcionada por Grupo Pacific Oil S.A.C.

# Desarrollo de una encuesta de satisfacción para los clientes finales de la empresa.

En el anexo 4, se presenta una encuesta de satisfacción creada para recabar información sobre los clientes finales de la empresa, pues actualmente no se cuenta con dicha retroalimentación por parte de ellos. Esto podría ayudar a optimizar, en siguientes

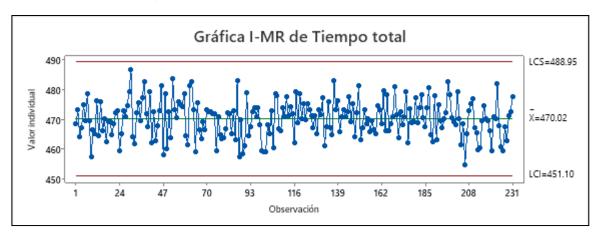
ciclos de mejora, los resultados de la empresa con respecto a sus niveles de productividad y calidad.

## Resultados esperados luego de la implementación.

Luego de haber culminado con las mejoras correspondientes, se espera que los tiempos iniciales de las etapas más críticas disminuyan y que el nivel sigma se incremente de acuerdo con lo propuesto en la tabla 20.

**Tabla 20.** *Mejoras esperadas* 

| Concepto                 | Situación inicial | Situación final |  |
|--------------------------|-------------------|-----------------|--|
| Tiempo total del proceso | 470.02 minutos    | 440 minutos     |  |
| Reprocesos               | 16.2%             | 5%              |  |
| Nivel Sigma del proceso  | 1.5               | 3               |  |


Nota: Elaboración propia.

#### Controlar

## Control estadístico de procesos.

Para corroborar que el proceso de producción de aceites se encuentre estable, se utilizará la herramienta estadística de control de procesos. De esta manera, se podrán observar si los tiempos de producción de cada etapa y del proceso total están dentro de los parámetros estimados o si están fuera de ellos, de modo que será más sencillo evidenciar desviaciones por reprocesos de producción. A continuación, en la figura 20, se presenta un ejemplo del control estadístico de procesos para el tiempo total de producción.

**Figura 20.**Control estadístico de procesos.



El control estadístico de procesos permitirá observar que los tiempos totales de producción se encuentren dentro de los límites superior e inferior del proceso. En caso se observara algún valor fuera de estos límites, se realizará inmediatamente la revisión del proceso y los ajustes necesarios para mantener los tiempos y niveles de producción de acuerdo con las mejoras implementadas.

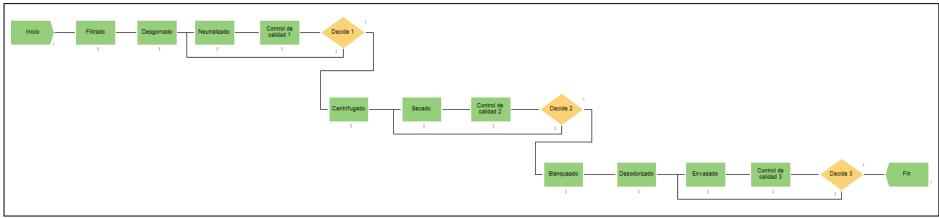
## CAPÍTULO V: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

#### Análisis de resultados

A continuación, se analizarán los resultados obtenidos a partir de la simulación realizada al proceso post mejora.

#### Simulación en Arena

La simulación en el software Arena fue realizada en función a las etapas del proceso productivo de los aceites y considerando los nuevos controles de calidad. En esta simulación se han considerado variaciones en los tiempos de tres etapas: Neutralizado, Secado y Envasado. De este modo, para el Neutralizado, se consideró una disminución de 20 minutos en los tiempos de trabajo, debido al desarrollo de la plantilla para el cálculo exacto de los insumos, el control de calidad implementado y la revisión continua de los equipos sugerida para esta etapa del proceso. Con respecto al Secado, se consideró una disminución de 20 minutos debido a la revisión continua (cada 5 minutos) de los indicadores de presión y a los planes de mantenimiento programados, de modo que se reducen las paradas continuas en esta etapa del proceso. Con respecto al Envasado, se consideró una disminución de 10 minutos debido a los mantenimientos preventivos planificados y a la continua calibración de los pistones de trabajo, lo que reduce las paradas innecesarias en los procesos de trabajo.


Las consideraciones adoptadas para la simulación se presentan en la tabla 21.

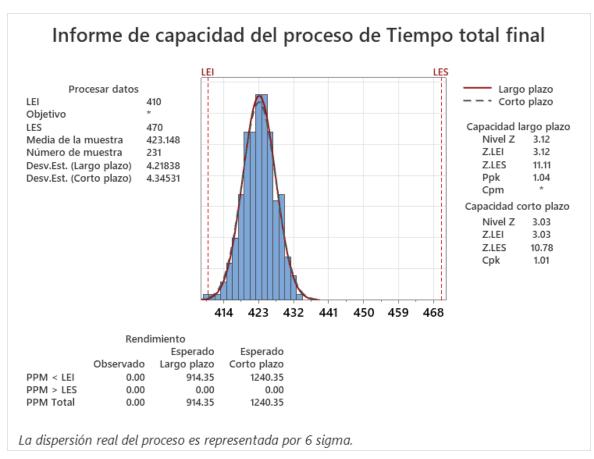
**Tabla 21.**Consideraciones adoptadas para la simulación

| Drassa                   | Descripción del                                                                                   | Consideraciones                                                                        | Disminución de |
|--------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|
| Proceso                  | proceso                                                                                           | Consideraciones                                                                        | tiempo         |
|                          | Proceso realizado para eliminar los                                                               | Desarrollo de una<br>plantilla para el<br>cálculo exacto de                            |                |
| Neutralizado             | ácidos grasos a<br>través de la<br>saponificación                                                 | insumos. Revisión<br>continua de los<br>equipos y controles<br>de calidad.             | 20 minutos     |
| Secado                   | Proceso realizado para separar el agua libre del aceite a través de un secado al vacío.           | Revisión continua de indicadores de presión. Planes de mantenimiento para maquinarias. | 20 minutos     |
| Envasado                 | Proceso realizado para llenar las presentaciones de aceite en función a los volúmenes requeridos. | Calibración de pistones de trabajo. Planes de mantenimiento para maquinarias.          | 10 minutos     |
| Nota: Elaboración propia | •                                                                                                 |                                                                                        |                |

Por otro lado, el diagrama trabajado en la simulación se detalla en la figura 21.

Figura 21. Simulación del proceso




Los resultados estadísticos descriptivos de este proceso de simulación son los siguientes:

**Tabla 22.**Estadísticos descriptivos del Tiempo total final (minutos)

| Variable           | N   | Media  | Desv.Est. | Varianza | Mínimo | Mediana | Máximo |
|--------------------|-----|--------|-----------|----------|--------|---------|--------|
| Tiempo total final | 231 | 423.15 | 4.22      | 17.79    | 410.25 | 423.15  | 433.79 |

De acuerdo con la simulación realizada, el tiempo promedio que se obtendrá para la fabricación de los lotes de aceites será de 423.15 minutos, con una desviación estándar de 4.22 minutos. A partir de estos valores simulados, se determinó la Capacidad del proceso a través del indicador Nivel sigma.

**Figura 22.** *Nivel Sigma post mejora* 



Nota: Elaboración propia.

De acuerdo con los resultados encontrados, el nivel Z del proceso es igual a 3.12. El nivel Sigma del proceso post mejora es el siguiente:

$$Nivel\ sigma = Nivel\ Z + 1.5 = 3.12 + 1.5 = 4.62$$

El nivel sigma mejoró significativamente, pues el proceso podrá ser considerado como estándar. A partir de los tiempos obtenidos, se realizó una prueba de hipótesis que permitió comprobar la disminución significativa de los tiempos totales de trabajo.

## Evaluación de los tiempos de trabajo

# a) Planteamiento de las Hipótesis:

Ho: La aplicación de Six Sigma no reduce los tiempos totales de trabajo del proceso de fabricación de aceite.

H1: La aplicación de Six Sigma reduce los tiempos totales de trabajo del proceso de fabricación de aceite.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 23 y 24.

**Tabla 23.** Estadísticos descriptivos de los tiempos totales

| Muestra              | N   | Media   | Desv.Est. | Error<br>estándar<br>de la<br>media |
|----------------------|-----|---------|-----------|-------------------------------------|
| Tiempo total inicial | 231 | 470.021 | 6.116     | 0.402                               |
| Tiempo total final   | 231 | 423.148 | 4.218     | 0.278                               |

Nota: Elaboración propia.

**Tabla 24.**Valor T y valor p de la prueba de hipótesis

| Hipótesis nula    | $H_0$ : diferencia_ $\mu$ = 0 |
|-------------------|-------------------------------|
| Hipótesis alterna | $H_1$ : diferencia_ $\mu$ > 0 |
| Valor T           | Valor p                       |
| 97.18             | 0.000                         |

Nota: Elaboración propia.

Conclusión: De acuerdo con los resultados de la tabla 24, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que la aplicación de Six Sigma reduce los tiempos totales de trabajo del proceso de fabricación de aceite.

## Validación de hipótesis de la investigación

A continuación, se realizarán las pruebas correspondientes a las hipótesis de la investigación. En primer lugar, se analizarán los reprocesos de producción.

# Prueba de hipótesis específica 1: Reprocesos de producción

a) Planteamiento de las Hipótesis:

H0: La aplicación de la metodología Six Sigma no disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 25 y 26.

**Tabla 25.** *Estadísticos descriptivos: Reprocesos* 

| Muestra              | N  | Media   | Desv.Est. | Error<br>estándar de<br>la media |
|----------------------|----|---------|-----------|----------------------------------|
| Reprocesos iniciales | 12 | 0.15783 | 0.00759   | 0.00219                          |
| Reprocesos finales   | 12 | 0.07726 | 0.03222   | 0.00930                          |

Nota: Elaboración propia.

**Tabla 26.**Valor T y valor p de la prueba de hipótesis: Reprocesos

| Hipótesis nula    | $H_0$ : diferencia_ $\mu$ = 0 |
|-------------------|-------------------------------|
| Hipótesis alterna | H₁: diferencia_μ > 0          |
| Valor T           | Valor p                       |
| 9.92              | 0.000                         |

Nota: Elaboración propia.

Conclusión: De acuerdo con los resultados de la tabla 26, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que la aplicación de la metodología Six Sigma disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

# Prueba de hipótesis específica 2: Eficiencia

## a) Planteamiento de las Hipótesis:

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 27 y 28.

**Tabla 27.** Estadísticos descriptivos: Eficiencia

| Muestra            | N  | Media    | Desv.Est. | Error<br>estándar de<br>la media |
|--------------------|----|----------|-----------|----------------------------------|
| Eficiencia inicial | 12 | 0.851004 | 0.002520  | 0.000727                         |
| Eficiencia final   | 12 | 0.945294 | 0.002298  | 0.000663                         |

Nota: Elaboración propia.

**Tabla 28.**Valor T y valor p de la prueba de hipótesis: Eficiencia

| Hipótesis nula    | $H_0$ : diferencia_ $\mu$ = 0 |
|-------------------|-------------------------------|
| Hipótesis alterna | $H_1$ : diferencia_ $\mu$ < 0 |
| Valor T           | Valor p                       |
| -94.52            | 0.000                         |

Nota: Elaboración propia.

Conclusión: De acuerdo con los resultados de la tabla 28, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que la aplicación de la metodología Six Sigma incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

# Prueba de hipótesis específica 3: Eficacia

# a) Planteamiento de las Hipótesis:

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 29 y 30.

**Tabla 29.** Estadísticos descriptivos: Eficacia

| Muestra          | N  | Media   | Desv.Est. | Error<br>estándar de<br>la media |
|------------------|----|---------|-----------|----------------------------------|
| Eficacia inicial | 12 | 0.83556 | 0.00611   | 0.00176                          |
| Eficacia final   | 12 | 0.91785 | 0.00644   | 0.00186                          |

Nota: Elaboración propia.

**Tabla 30.**Valor T y valor p de la prueba de hipótesis: Eficacia

| Hipótesis nula    | $H_0$ : diferencia_ $\mu$ = 0 |
|-------------------|-------------------------------|
| Hipótesis alterna | H₁: diferencia_μ < 0          |
| Valor T           | Valor p                       |
| -32.63            | 0.000                         |

Nota: Elaboración propia.

Conclusión: De acuerdo con los resultados de la tabla 30, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que la aplicación de la metodología Six Sigma incrementa significativamente la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

## Prueba de hipótesis general: Productividad

## a) Planteamiento de las Hipótesis:

H0: La aplicación de la metodología Six Sigma no incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

b) Nivel de significancia:  $\alpha = 0.05$ 

c) Estadístico de prueba: Ver tabla 31 y 32.

**Tabla 31.** Estadísticos descriptivos: Productividad

| Muestra               | N  | Media   | Desv.Est. | Error<br>estándar de<br>la media |
|-----------------------|----|---------|-----------|----------------------------------|
| Productividad inicial | 12 | 0.71107 | 0.00557   | 0.00161                          |
| Productividad final   | 12 | 0.86764 | 0.00725   | 0.00209                          |

Nota: Elaboración propia.

**Tabla 32.**Valor T y valor p de la prueba de hipótesis: Productividad

| Hipótesis nula    | $H_0$ : diferencia_ $\mu$ = 0 |
|-------------------|-------------------------------|
| Hipótesis alterna | H₁: diferencia_μ < 0          |
| Valor T           | Valor p                       |
| -59.73            | 0.000                         |

Nota: Elaboración propia.

Conclusión: De acuerdo con los resultados de la tabla 32, el p-valor (0.000) es menor que el nivel de significancia  $\alpha$  (0.05), por lo que se rechaza la Ho. Por lo tanto, se concluye que la aplicación de la metodología Six Sigma incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

#### Evaluación económico-financiera

Para realizar el análisis económico financiero de la propuesta de implementación se consideraron los ahorros generados por las mejoras planteadas y se consideraron los costos de mantenimiento, capacitación y adquisición de insumos para el proceso productivo. En primer lugar, se muestra el ahorro mensual obtenido gracias a las menores cantidades de reprocesos de producción.

**Tabla 33.** *Ahorros generados por la implementación* 

| Mac            | Disminución de reprocesos<br>(Toneladas) | Costo por reproceso (S/.) | Ahorro total<br>(S/.) |  |  |
|----------------|------------------------------------------|---------------------------|-----------------------|--|--|
| Enero          | 2.12                                     | S/ 6,386                  | S/ 13,537             |  |  |
| Febrero        | 4.58                                     | S/ 6,386                  | S/ 29,242             |  |  |
| Marzo          | 1.98                                     | S/ 6,386                  | S/ 12,657             |  |  |
| Abril          | 4.36                                     | S/ 6,386                  | S/ 27,866             |  |  |
| Mayo           | 5.14                                     | S/ 6,386                  | S/ 32,828             |  |  |
| Junio          | 4.60                                     | S/ 6,386                  | S/ 29,366             |  |  |
| Julio          | 2.93                                     | S/ 6,386                  | S/ 18,737             |  |  |
| Agosto         | 5.28                                     | S/ 6,386                  | S/ 33,719             |  |  |
| Setiembre      | 4.78                                     | S/ 6,386                  | S/ 30,550             |  |  |
| Octubre        | 2.03                                     | S/ 6,386                  | S/ 12,969             |  |  |
| Noviembr<br>e  | 5.22                                     | S/ 6,386                  | S/ 33,313             |  |  |
| Diciembre      | 0.96                                     | S/ 6,386                  | S/ 6,119              |  |  |
| Total<br>anual |                                          |                           | S/ 280,903            |  |  |

Nota: Elaboración propia.

El ahorro anual generado será de S/.280,903. Los ahorros mensuales serán visualizados en el flujo de caja construido posteriormente.

Asimismo, se determinó el costo de cada capacitación trimestral, a partir de las horas de capacitación y del costo por hora que será pagado al capacitador *correspondiente*.

**Tabla 34.**Costo de capacitaciones

| Fecha de capacitación | Horas de capacitación |   | Costo/hora |        | Costo diario |
|-----------------------|-----------------------|---|------------|--------|--------------|
| Día n°1               |                       | 3 |            | S/ 250 | S/ 750       |
| Día n°2               |                       | 3 |            | S/ 250 | S/ 750       |
| Día n°3               |                       | 2 |            | S/ 250 | S/ 500       |
| Día n°4               |                       | 2 |            | S/ 250 | S/ 500       |
| Costo total           |                       |   |            |        | S/ 2,500     |

Nota: Elaboración propia.

El costo total correspondiente a cada capacitación trimestral, la cual se realizará durante cuatro días por un total de 10 horas, será de S/.2,500.

Por otro lado, el costo correspondiente a los mantenimientos de todas las maquinarias y equipos de producción, detallados previamente en la tabla 19, se muestran a continuación.

**Tabla 35.**Costo de mantenimiento de maquinarias y equipos

| Maquinaria/equipo                          | Cantidad | Frecuencia | H-H | Costo H-H | Costo total anual |
|--------------------------------------------|----------|------------|-----|-----------|-------------------|
| Ahorrador vertical                         | 1        | Semestral  | 5   | S/ 50     | S/ 500            |
| Atrapador                                  | 2        | Trimestral | 4   | S/ 50     | S/ 1,600          |
| Cabina combinada de separación aceite-agua | 2        | Trimeetral | 8   | S/ 50     | S/ 3 200          |
| Caldera                                    | 2        | Trimestral | 5   | S/ 50     | S/ 2,000          |
| Calentador de aceite                       | 5        | Semestral  | 5   | S/ 50     | S/ 2,500          |
| Centrífuga                                 | 2        | Semestral  | 12  | S/ 50     | S/ 2,400          |
| Compresor de aire                          | 1        | Semestral  | 10  | S/ 50     | S/ 1,000          |
| Condensador                                | 2        | Trimestral | 10  | S/ 50     | S/ 4,000          |
| Deodorizador                               | 1        | Semestral  | 8   | S/ 50     | S/ 800            |
| Distribuidor de aceite                     | 3        | Semestral  | 6   | S/ 50     | S/ 1,800          |
| Distribuidor de agua                       | 1        | Semestral  | 6   | S/ 50     | S/ 600            |
| Distribuidor de vapor                      | 1        | Semestral  | 6   | S/ 50     | S/ 600            |
| Elevador de arcilla blanqueadora           | 1        | Semestral  | 8   | S/ 50     | S/ 800            |
| Enfriador de ácidos grasos                 | 1        | Trimestral | 10  | S/ 50     | S/ 2,000          |
| Envasadora                                 | 1        | Semestral  | 15  | S/ 50     | S/ 1,500          |
| Filtro                                     | 6        | Trimestral | 10  | S/ 50     | S/ 12,000         |
| Grúa eléctrica                             | 2        | Semestral  | 20  | S/ 50     | S/ 4,000          |
| Intercambiador de calor                    | 4        | Semestral  | 10  | S/ 50     | S/ 4,000          |
| Maquina secadora de aire                   | 1        | Semestral  | 12  | S/ 50     | S/ 1,200          |
| Mesa de lavado de discos                   | 1        | Semestral  | 5   | S/ 50     | S/ 500            |
| Mezclador multiefecto                      | 3        | Semestral  | 15  | S/ 50     | S/ 4,500          |
| Piscina lavadora de redes de filtros       | 1        | Trimestral | 10  | S/ 50     | S/ 2,000          |
| Secador al vacío                           | 1        | Semestral  | 15  | S/ 50     | S/ 1,500          |
| Separador de aceite-vapor                  | 1        | Trimestral | 10  | S/ 50     | S/ 2,000          |
| Separador vapor-agua                       | 1        | Trimestral | 10  | S/ 50     | S/ 2,000          |
| Sistema de generación de vacío             | 3        | Semestral  | 8   | S/ 50     | S/ 2,400          |
| Suavizador                                 | 1        | Semestral  | 12  | S/ 50     | S/ 1,200          |
| Supercalentador de vapor                   | 1        | Semestral  | 15  | S/ 50     | S/ 1,500          |
| Tanque industrial                          | 29       | Trimestral | 10  | S/ 50     | S/ 58,000         |
| Torre industrial                           | 5        | Semestral  | 18  | S/ 50     | S/ 9,000          |
| Tubo de cuantificación de arcilla          | 1        | Semestral  | 8   | S/ 50     | S/ 800            |
| Válvula de cuantificación de               | 1        | Semestral  | 6   | S/ 50     | S/ 600            |
| arcilla                                    |          |            |     |           |                   |
| Monto total  Nota: Flaboración propia      |          |            |     |           | S/ 132,500        |

Nota: Elaboración propia.

El costo total anual correspondiente a los mantenimientos de las maquinarias y equipos será de S /.132,500. Los costos mensuales serán observados posteriormente en el flujo de caja.

A partir de la estructura de ingresos (ahorros) y costos, se realizará la evaluación económico-financiera de la implementación a través del cálculo del flujo de caja de la implementación.

**Tabla 36.** Flujo de caja

| Flujo de caja Six Sigma                                    | Mes 0          | Mes 1         | Mes 2          | Mes 3          | Mes 4         | Mes 5          | Mes 6          | Mes 7         | Mes 8          | Mes 9          | Mes 10        | Mes 11         | Mes 12         |
|------------------------------------------------------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|
| Ahorro mensual                                             | S/. 0.00       | S/. 13,537.27 | S/. 29,241.88  | S/. 12,656.69  | S/. 27,865.71 | S/. 32,827.74  | S/. 29,366.16  | S/. 18,737.36 | S/. 33,718.74  | S/. 30,550.10  | S/. 12,969.07 | S/. 33,313.05  | S/. 6,118.87   |
| (-) Programa de capacitación a los trabajadores            | S/. 0.00       | -S/. 2,500.00 | S/. 0.00       | S/. 0.00       | -S/. 2,500.00 | S/. 0.00       | S/. 0.00       | -S/. 2,500.00 | S/. 0.00       | S/. 0.00       | -S/. 2,500.00 | S/. 0.00       | S/. 0.00       |
| (-) Implementos para capacitaciones                        | S/. 0.00       | -S/. 300.00   | S/. 0.00       | S/. 0.00       | -S/. 300.00   | S/. 0.00       | S/. 0.00       | -S/. 300.00   | S/. 0.00       | S/. 0.00       | -S/. 300.00   | S/. 0.00       | S/. 0.00       |
| (-) Mantenimientos mensuales de maquinarias                | S/. 0.00       | -S/. 4,700.00 | -S/. 6,300.00  | -S/. 22,450.00 | -S/. 9,050.00 | -S/. 5,550.00  | -S/. 24,200.00 | -S/. 4,700.00 | -S/. 6,300.00  | -S/. 22,450.00 | -S/. 9,050.00 | -S/. 5,550.00  | -S/. 24,200.00 |
| (-) Compra de insumos (filtros para envasado)              | S/. 0.00       | S/. 0.00      | -S/. 10,000.00 | S/. 0.00       | S/. 0.00      | -S/. 10,000.00 | S/. 0.00       | S/. 0.00      | -S/. 10,000.00 | S/. 0.00       | S/. 0.00      | -S/. 10,000.00 | S/. 0.00       |
| (-) Depreciaciones                                         | S/. 0.00       | -S/. 750.00   | -S/. 750.00    | -S/. 750.00    | -S/. 750.00   | -S/. 750.00    | -S/. 750.00    | -S/. 750.00   | -S/. 750.00    | -S/. 750.00    | -S/. 750.00   | -S/. 750.00    | -S/. 750.00    |
| EBIT                                                       | S/. 0.00       | S/. 5,287.27  | S/. 12,191.88  | -S/. 10,543.31 | S/. 15,265.71 | S/. 16,527.74  | S/. 4,416.16   | S/. 10,487.36 | S/. 16,668.74  | S/. 7,350.10   | S/. 369.07    | S/. 17,013.05  | -S/. 18,831.13 |
| (-) Impuesto a la renta (I.R.)                             | S/. 0.00       | -S/. 1,559.74 | -S/. 3,596.60  | S/. 3,110.28   | -S/. 4,503.39 | -S/. 4,875.68  | -S/. 1,302.77  | -S/. 3,093.77 | -S/. 4,917.28  | -S/. 2,168.28  | -S/. 108.87   | -S/. 5,018.85  | S/. 5,555.18   |
| (+) Depreciaciones                                         | S/. 0.00       | S/. 750.00    | S/. 750.00     | S/. 750.00     | S/. 750.00    | S/. 750.00     | S/. 750.00     | S/. 750.00    | S/. 750.00     | S/. 750.00     | S/. 750.00    | S/. 750.00     | S/. 750.00     |
| Flujo de caja operativo                                    | S/. 0.00       | S/. 4,477.52  | S/. 9,345.27   | -S/. 6,683.03  | S/. 11,512.33 | S/. 12,402.06  | S/. 3,863.40   | S/. 8,143.59  | S/. 12,501.46  | S/. 5,931.82   | S/. 1,010.19  | S/. 12,744.20  | -S/. 12,525.94 |
| Inversión en equipo de laboratorio para control de calidad | -S/. 45,000.00 | S/. 0.00      | S/. 0.00       | S/. 0.00       | S/. 0.00      | S/. 0.00       | S/. 0.00       | S/. 0.00      | S/. 0.00       | S/. 0.00       | S/. 0.00      | S/. 0.00       | S/. 0.00       |
| Flujo de caja de libre disponibilidad                      | -S/. 45,000.00 | S/. 4,477.52  | S/. 9,345.27   | -S/. 6,683.03  | S/. 11,512.33 | S/. 12,402.06  | S/. 3,863.40   | S/. 8,143.59  | S/. 12,501.46  | S/. 5,931.82   | S/. 1,010.19  | S/. 12,744.20  | -S/. 12,525.94 |

El flujo de caja se proyectó a partir de los ahorros mensuales generados gracias a la implementación de las mejoras por Six Sigma, mostrados en la tabla 33. Con respecto a los gastos, se consideraron los gastos del programa de capacitación a los trabajadores (tabla 34), que se realizarán trimestralmente, así como la compra de implementos para estas reuniones. Asimismo, también se consideraron los mantenimientos mensuales de las maquinarias (tabla 35), la compra de insumos para la producción (filtros para el envasado, entre otros) y las depreciaciones de los activos adquiridos. Con respecto a la inversión, se consideró la compra de equipo de laboratorio para el control de calidad, el cual tuvo un costo de S/.45,000, pues se adquirieron viscosímetros, potenciómetros, conductímetros y equipos complementarios.

Es relevante mencionar que, adicionalmente al costo del mantenimiento preventivo de las maquinarias, se destinó un monto de S/1,000 mensuales para el mantenimiento correctivo, a fin de contar con los recursos necesarios para realizar todos los mantenimientos que sean necesarios durante el proceso de trabajo de la empresa.

Para determinar los indicadores de rentabilidad, se consideró un Costo de oportunidad de capital del 25% anual, valor referido por el área contable de la empresa estudiada. Dado que esta tasa corresponde a una tasa efectiva anual, se calculó su equivalente mensual, la cual resultó igual a 1.88%.

A partir de estos resultados, se determinaron los indicadores de rentabilidad: Valor actual neto (VAN), Tasa interna de retorno (TIR), Periodo de recuperación descontado (PRD) y Ratio beneficio/costo (ratio B/C).

El Valor actual neto se determinó utilizando la siguiente fórmula:

$$VAN = -45,000 + \frac{4,477.52}{(1+1.88\%)^{1}} + \frac{9,345.27}{(1+1.88\%)^{2}} + \frac{-6,683.03}{(1+1.88\%)^{3}} + \frac{11,512.33}{(1+1.88\%)^{4}} + \frac{12,402.06}{(1+1.88\%)^{5}} + \frac{3,863.40}{(1+1.88\%)^{6}} + \frac{8,143.59}{(1+1.88\%)^{7}} + \frac{12,501.46}{(1+1.88\%)^{8}} + \frac{5,931.82}{(1+1.88\%)^{9}} + \frac{1,010.19}{(1+1.88\%)^{10}} + \frac{12,744.20}{(1+1.88\%)^{11}} + \frac{-12,525.94}{(1+1.88\%)^{12}}$$

$$VAN = 11,667.81$$

El Valor actual neto de la implementación será igual a S/.49,933.56; de este modo, ya que es un valor positivo, se considera que la implementación es viable.

Por otro lado, el cálculo de la Tasa interna de retorno se muestra a continuación.

$$0 = -45,000 + \frac{4,477.52}{(1+TIR)^1} + \frac{9,345.27}{(1+TIR)^2} + \frac{-6,683.03}{(1+TIR)^3} + \frac{11,512.33}{(1+TIR)^4} + \frac{12,402.06}{(1+TIR)^5} + \frac{3,863.40}{(1+TIR)^6} + \frac{8,143.59}{(1+TIR)^7} + \frac{12,501.46}{(1+TIR)^8} + \frac{5,931.82}{(1+TIR)^9} + \frac{1,010.19}{(1+TIR)^{10}} + \frac{12,744.20}{(1+TIR)^{11}} + \frac{-12,525.94}{(1+TIR)^{12}}$$

$$TIR = 6.39\%$$

La Tasa interna de retorno (TIR) es igual a 6.39%; por lo tanto, ya que tuvo un valor superior al Costo de oportunidad de capital (1.88%), se confirma que la implementación es viable.

El cálculo del periodo de recuperación de la inversión se muestra en la tabla 37.

**Tabla 37.** Periodo de recuperación de la inversión

| Concepto                                      | Mes 0               | Mes 1   | Mes 2   | Mes 3   | Mes 4   | Mes 5   | Mes 6   | Mes 7  | Mes 8  | Mes 9  | Mes 10  | Mes 11 | Mes 12  |
|-----------------------------------------------|---------------------|---------|---------|---------|---------|---------|---------|--------|--------|--------|---------|--------|---------|
| Flujo de caja                                 | <del>-</del> 0/.    | S/      | S/      | -S/     | S/      | S/      | S/      | S/     | S/     | S/     | S/      | S/     | -S/     |
| descontado                                    | <del>4</del> 5,000. | 4,395.0 | 9,004.1 | 6,320.4 | 10,687. | 11,300. | 3,455.5 | 7,149. | 10,773 | 5,017. | 838 77  | 10,386 | 10,020. |
|                                               | 00                  | 3       | 0       | 2       | 10      | 94      | 3       | 66     | .43    | 71     | A 10 77 | .72    | 76      |
| Elvie de seis                                 | -S/                 | -S/     | -S/     | -S/     | -S/     | -S/     | -S/     | -S/    | S/     | S/     | S/      | S/     | S/      |
| Flujo de caja                                 | 45,000.             | 40,604. | 31,600. | 37,921. | 27,234. | 15,933. | 12,477. | 5,328. | 5,445. | 10,463 | 11,301  | 21,688 | 11,667. |
| acumulado                                     | 00                  | 97      | 87      | 29      | 19      | 25      | 72      | 07     | 37     | .07    | .85     | .57    | 81      |
| Periodo de<br>recuperación de la<br>inversión | 7.49                | meses   |         |         |         |         |         |        |        |        |         |        |         |

Nota: Elaboración propia

Con respecto al periodo de recuperación, este será de 7.49 meses, lo que significa que la inversión realizada se recuperará en el corto plazo.

Finalmente, el cálculo del ratio beneficio/costo es el siguiente.

$$Ratio \frac{B}{C} = \frac{\sum Flujos\ descontados}{Inversión\ inicial} = \frac{S/.56,667.81}{S/.45,000.00} = 1.26$$

Finalmente, el ratio Beneficio/Costo fue igual a 1.26, lo que significa que por cada S/.1.00 que se invierta en esta mejora se recibirá un flujo neto de S/.1.26; esto reconfirma nuevamente que la implementación descrita en esta investigación es rentable

En conclusión, debido a todas las evaluaciones realizadas y demostradas en las tablas previas, y gracias a todas las mejoras que se han introducido en el proceso de producción de aceites, ha dado como resultado una mejora significativa de la productividad y sus dimensiones, así como una mejora significativa en la rentabilidad de la empresa, demostrado a partir de los indicadores financieros calculados.

### Discusiones

Los resultados obtenidos en la presente investigación permitieron comprobar que la aplicación de la metodología Six Sigma incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C. pues el valor de la productividad aumentó desde un porcentaje inicial de 71.11% hasta un nivel final de 86.76% (+15.66%). Asimismo, se logró demostrar que los reprocesos disminuyen significativamente, desde unporcentaje inicial de 15.78% hasta un porcentaje final de 7.73% (-8.06%); que la eficiencia se incrementa significativamente, desde un valor inicial de 85.10% hasta un valor final de 94.53% (+9.43%); y que la eficacia se incrementa significativamente, desde un porcentaje inicial de 83.56% hasta un valor final de 91.79% (+8.23%). De forma complementaria, se demostró que todas las mejoras realizadas fueron económicamente viables, puesto que el VAN es igual a S/.11,667.81, la TIR es igual a 6.39%, el PRD es igual a 7.49 meses y el ratio B/C es igual a 1.26.

Los resultados encontrados en este trabajo de investigación coincidieron con los de Sierralta (2022), quien desarrolló un estudio en el que evaluó la productividad de una empresa textil y cómo esta se ve afectada por aplicación de la metodología Six Sigma, logrando incrementar la eficacia de su proceso productivo desde un valor de 84.29% hasta un nivel de 97.56% (+13.27%) e incrementar la productividad desde un valor de 69.87% hasta un nivel final de 95.31% (+25.44%). Por otro lado, los resultados hallados en este trabajo también coincidieron con los de Calderón (2020), quien desarrolló una investigación sobre la metodología Six Sigma y su influencia en la productividad de una empresa de plásticos. En este trabajo, se pudo reducir la merma en un 37.9%, incrementar el nivel sigma del proceso desde un valor de 1.95 sigmas a un final de 4.17 sigmas y generar ahorros de 2,727.35 kilogramos de materias primas.

Asimismo, los resultados del presente trabajo también coincidieron con el realizado por Núñez (2018), quien realizó un estudio sobre la metodología Six Sigma y su aplicación para mejorar la productividad de la empresa Moriwoki Racing Perú. Los resultados de esta

investigación mejoraron los niveles de eficacia desde un monto inicial de 45% hasta un valor final de 81%, se mejoró el nivel de eficiencia desde un 67% hasta un valor final de 77% y se mejoró el nivel de productividad desde un porcentaje inicial de 32% hasta un nivel final de 57%. Finalmente, los resultados del presente trabajo coinciden con los de Benítez (2019), quien desarrolló una investigación sobre las MYPES de Quito, determinando cómo su productividad se ve mejorada por la metodología Six Sigma. En este trabajo de investigación, se demostró una mejora del rendimiento del 52%, un incremento del nivel sigma desde un valor inicial de 0.24 sigmas hasta un valor final de 3.26 sigmas, y un ahorro significativo de \$15,000 gracias a los cambios implementados. sigma desde un valor de 0.132 a un valor de 1.62, mejorando su rendimiento en un 52%.

De esta manera, tanto en la empresa Grupo Pacific Oil S.A.C. como en otras empresas estudiadas en investigaciones posteriores, queda demostrado que la aplicación de la metodología Six Sigma permite incrementar la variable productividad, así como sus dimensiones, y que esta implementación es rentable para las organizaciones.

# CAPÍTULO VI: CONCLUSIONES Y RECOMENDACIONES

#### Conclusiones

Como resultado del análisis realizado, se pudo demostrar que la aplicación de la metodología Six Sigma incrementa significativamente la productividad en el área de Producción de Grupo Pacific Oil S.A.C., desde un nivel inicial de 71.11% hasta un nivel final de 86.76% (+15.66%).

Adicionalmente, se demostró que la aplicación de la metodología Six Sigma disminuye significativamente los reprocesos en el área de Producción de Grupo Pacific Oil S.A.C., desde un nivel inicial de 15.78% hasta un nivel final de 7.73% (-8.06%).

Con relación a la eficiencia, la aplicación de la metodología Six Sigma incrementó significativamente esta dimensión en el área de Producción de Grupo Pacific Oil S.A.C., desde un nivel inicial de 85.10% hasta un nivel final de 94.53% (+9.43%).

Por otro lado, con respecto a la eficacia, la aplicación de la metodología Six Sigma incrementó significativamente esta dimensión en el área de Producción de Grupo Pacific Oil S.A.C., desde un nivel inicial de 83.56% hasta un nivel final de 91.79% (+8.23%).

De este modo, dadas las conclusiones obtenidas en la investigación, es posible afirmar que la aplicación de la metodología Six Sigma en una empresa ofrece beneficios relevantes, como la mejora de su productividad, la disminución de los reprocesos de trabajo, el incremento de la eficiencia y el aumento de la eficacia en el área de Producción.

Para la aplicación de la metodología Six Sigma, la empresa Grupo Pacific Oil S.A.C. debe desarrollar las etapas del DMAIC, usando las herramientas correspondientes a cada fase, a fin de diagnosticar correctamente los problemas y plantear las soluciones que se mantendrán en el tiempo. Un nuevo ciclo de mejora solo podrá ser iniciado cuando se hayan definido apropiadamente las medidas de control de la mejora previa, lo cual asegurará el mantenimiento de esta optimización, permitiendo diagnosticar nuevos

problemas y definir soluciones efectivas que mejoren la calidad de los procesos en el largo plazo.

### Recomendaciones

En primer lugar, se recomienda diseñar un área de mejora continua dentro de la empresa, que se encargue de evaluar las posibles causas raíz que podrían generar nuevos problemas de productividad en el futuro.

Asimismo, se considera importante capacitar a algunos colaboradores de la empresa en la metodología Six Sigma, de modo que se cuente con algunos Yellow belts o Green belts capacitados, que puedan dirigir los siguientes procesos de mejora en la empresa.

Por otro lado, será importante profundizar en los gastos de mantenimiento de maquinarias y equipos de la empresa, pues actualmente no realizan este tipo de actividades, teniendo que ser calculado de forma aproximada.

Adicionalmente, es recomendable realizar el control correspondiente de los procesos de trabajo a través de los gráficos de control estadísticos, de modo que se puedan identificar los valores atípicos y tomar las medidas correctivas correspondientes. La recopilación, ordenamiento e interpretación de la data de los procesos productivos permitirá que la empresa corrija los errores oportunamente y mantenga las mejoras implementadas con el tiempo, en procesos más controlados.

Complementariamente, se recomienda aplicar la metodología Six Sigma en otras áreas de la empresa, como las áreas de logística, almacén o mantenimiento, de modo que la mejora de la productividad de Grupo Pacific Oil S.A.C. sea integral y se pueda contar con un conocimiento más profundo de todos los procesos trabajados dentro de la empresa, facilitando la mejora operativa de la organización.

Finalmente, es relevante recomendar la realización de más investigaciones sobre la implementación de Six Sigma en otras empresas del rubro industrial de aceites, a fin de comprobar que el modelo es replicable en otras organizaciones.

### Referencias Bibliográficas

- Antony, J., Snee, R. & Hoerl, R. (2017). Lean Six Sigma: yesterday, today and tomorrow. International Journal of Quality & Reliability Management, 34 (7), 1073-1093.
- Arcidiacono, G. y Pieroni, A. (2018). The revolution Lean Six Sigma 4.0. *International Journal on Advance Science Engineering Information Technology, 8*(1), 141-149.
- Arias, L., Margarita, L. y Castaño, J. (2008). Aplicación de Six Sigma en las organizaciones. Scientia et Technica, 38(1), 265-270.
- Badii, M., Castillo, J., Rodríguez, M., Wong, A. y Villalpando, P. (2007). Diseños experimentales e investigación científica. *Innovaciones de negocios*, *4*(2), 283-330.
- Baraei, E., y Mirzaei, M. (2018). Identification of factors affecting on organizational agility and its impact on productivity. *UCT Journal of Management Adn Accounting Studies*, 6(4), 13-19.
- Benítez, M. (2019). Análisis de las pequeñas y medianas empresas que aplicaron la metodología Six Sigma en la ciudad de Quito durante los últimos cinco años (Tesis de licenciatura). https://dspace.ups.edu.ec/bitstream/123456789/17161/1/UPS-QT13890.pdf
- Bonilla, C. (2020). Análisis de los factores determinantes del Lean Six Sigma en la productividad y competitividad de las MIPYMES colombianas (Tesis de maestría). https://repository.universidadean.edu.co/bitstream/handle/10882/10291/BonillaCarlos2020.pdf?sequence=1&isAllowed=y
- Calderón, J. (2020). Implementación de la metodología Lean Six Sigma para mejorar la productividad en una empresa de plásticos (Tesis de maestría). https://repositorio.urp.edu.pe/bitstream/handle/20.500.14138/3280/ind-T030\_74051145\_M%20%20%20JOSÉ%20IVAN%20CALDERÓN%20CARRILLO. pdf?sequence=1&isAllowed=y
- Camue, A., Carballal, E., y Toscano, D. (2017). Concepciones teóricas sobre la efectividad organizacional y su evaluación en las universidades. *Cofin Habana, 11*(2), 136-152.
- Cañedo, C., Curbelo, M., Nuñez, K., y Zamora, R. (2012). Los procedimientos de un sistema de gestión de información: Un estudio de caso de la Universidad de Cienfuegos. *Biblios*, *46* (1), 40-50.
- Cevallos, P. (2017). Análisis y reducción de reprocesos y desperdicios en la línea de producción de la empresa Fruconsa (Tesis de maestría).

- http://repositorio.puce.edu.ec/bitstream/handle/22000/12953/TESIS\_Patricia%20C evallos\_MBA%20en%20Calidad%20y%20Productividad.pdf?sequence=1&isAllow ed=y
- Consuegra, O. (2015). Metodología AMFE como herramienta de gestión de riesgo en un hospital universitario. *Cuadernos Latinoamericanos de Administración*, 11(20), 37-50.
- Creswell, J. y Creswell, J. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (3<sup>a</sup> ed.). SAGE Publications.
- Criollo, F. (2019). Implementación del sistema de gestión de calidad ISO 9001:2015 para la mejora de la productividad en la empresa FABRODCIS EIRL en el área de producción (Tesis de licenciatura). http://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/10657/Criollo\_sf.p df?sequence=1&isAllowed=y
- Cudney, E., Jeemooth, S., Materla, T. y Antony, J. (2018). Systematic review of Lean and Six Sigma approaches in higher education. *Total Quality Management & Business Excellence*, *31*(4), 231-244.
- Díaz, L., Torruco, U., Martínez, M. y Varela, M. (2013). La entrevista, recurso flexible y dinámico. *Investigación en Educación Médica*, 2(7), 162-167.
- Díaz, N., Leal, M., y Urdaneta, A. (2018). Organizational DNA and productivity in the family business. *Desarrollo Gerencial*, *10*(1), 105-122.
- Dulzaides, M. y Molina, A. (2004). Análisis documental y de información: dos componentes de un mismo proceso. *ACIMED*, *12*(2), 1-4
- Eckes, G. (2003). Six Sigma for Everyone (1ª ed.). Wiley.
- Encalada, G., Gaibor, J., Gómez, I. & Acosta, M. (2020). Calidad y productividad en los diferentes procesos de Six Sigma. *FIPCAEC*, *5* (22), 181-189.
- Fernández, H. & Rimapa, C. (2018). Plan de mejora basado en Lean Six Sigma para aumentar la productividad en el proceso de producción de la empresa El Águila S.R.L-Chiclayo-2017 (Tesis de licenciatura). https://repositorio.uss.edu.pe/bitstream/handle/20.500.12802/4646/Fernández%20 Bernal%20-%20Rimapa%20Requejo%20.pdf?sequence=1&isAllowed=y
- Florián, A. (2020). *Metodología Six Sigma y productividad en la empresa Dominion Perú - Chorrillos*, 2020 (Tesis de licenciatura).

- https://repositorio.autonoma.edu.pe/bitstream/handle/20.500.13067/1408/Florian% 20Levano%2C%20Andrea%20Lizbeth.pdf?sequence=1&isAllowed=y
- Furterer, S. (2015). Lean Six Sigma en el servicio: aplicaciones y estudios de caso (1ª ed.).

  Trillas.
- Gallardo, D. & Montecé, I. (2019). Análisis de la técnica de Lean Six Sigma en los procesos logísticos de comercio exterior en AQ-Line S.A. (Tesis de licenciatura). http://repositorio.ug.edu.ec/bitstream/redug/38851/1/TESIS%20FINAL%20DEYRA%20GALLARDO%20e%20INES%20MONTECE.pdf
- García, A. (2011). Productividad y reducción de costos: Para la pequeña y mediana industria (2ª ed.). Trillas.
- García, R., Paredes, J. y Casas, G. (2022). Mejora de la productividad de la industria del sombrero en la región de Tehuacán aplicando DMAIC- Six Sigma. Red Internacional de Investigadores en Competitividad XV Congreso.
- Goldsby, T. & Martichenko, R. (2005). Lean Six Sigma Logistics: Strategic Development to Operational Success (1ª ed.). J. Ross Publishing.
- Guimarey, F., Hernández, L. y Vasquez, M. (2021). Mejora de la productividad empleándola metodología DMAIC. *Ciencia, Tecnología e Innovación, 8*(2), 77-91.
- Gunjan, Y. y Tushar, D. (2016). Lean Six Sigma: a categorized review of the literature. International Journal of Lean Six Sigma, 7(1), 2-24.
- Gupta, R., Jain, R., Meena, M. y Dangayach, G. (2017). Six-sigma application in tire-manufacturing company: a case study. *Journal of Industrial Engineering International*, 14, 511-520.
- Gutiérrez, H. & De La Vara, R. (2009). Control estadístico de calidad y Seis Sigma (2ª ed.).

  McGraw-Hill.
- Hernández, R. y Mendoza, C. (2018). *Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta* (1ª ed.). Editorial McGraw Hill.
- Hernández, R., Fernández, C. y Baptista, P. (2014). *Metodología de la investigación* (6ª ed.). McGraw-Hill
- Herrera, R. (2006). Seis Sigma métodos estadísticos y sus aplicaciones (1º ed.). Herrera Acosta, Roberto José.

- Imelio, J. (2016). *El proceso de envasado.* https://www.inac.uy/innovaportal/file/10508/1/envasado\_pcoc.pdf
- Javier, F. & Gómez, L. (1991). *Indicadores de calidad y productividad en la empresa* (1<sup>a</sup> ed.). Nuevos tiempos.
- Krajewski, L., Ritzman, L. & Malhotra, M. (2008). Administración de operaciones procesos y cadenas de valor (8ª ed.). Pearson Prentice Hall.
- Londoño, P., Mieres-Pitre, A., & Hernández, C. Extracción y caracterización del aceite crudo de la almendra de durazno. *Prunus pérsica Avances en Ciencias e Ingeniería*, *3*(4), 37-46
- Love, P. (2002). Influence of Project Type and Procurement Method on Rework Costs in Building Construction Projects. *Journal of Construction Engineering and Management*, 128 (1), 18-29.
- Luis, S., García, L. & Villareal, F. (2014). Six sigma: factores y conceptos claves. Investigación operativa, 22 (36), 100-110.
- Message, L., Godinho, M., Fredendall, L. y Gómez, F. (2018). Lean, six sigma and lean six sigma in the food industry: A systematic literature review. *Trends in Food Science & Technology*, 82(1), 122-133.
- Moosa, K. & Sajid, A. (2010). Critical analysis of Six Sigma implementation. *Total Quality Management*, *21* (7), 745-759.
- Núñez, C. (2018). Aplicación de la metodología Six Sigma para mejorar la productividad en el almacén de la empresa Moriwoki Racing Perú - Callao 2017 (Tesis de licenciatura). https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/23297/Núñez\_CCE.p df?sequence=1&isAllowed=y
- Otero, J. y Marrod, M. (2017). Experiencia líquida (1ª ed.). LID Editorial Empresarial.
- Pacheco, D. & Gómez, J. (2022). Aplicación de la metodología Lean Six Sigma para el incremento de la productividad del proceso de envasado de cilindros de gas licuado de petróleo (Tesis de maestría). https://dspace.ups.edu.ec/bitstream/123456789/21952/1/UPS-GT003633.pdf
- Pande, P. (2004). Las claves prácticas de Seis Sigma (1º ed.). McGraw-Hill.
- Pande, P., Neuman, R. & Cavanagh, R. (2004). Las claves prácticas de Six Sigma. Una guía dirigida a los equipos de mejora de procesos (1º ed.). McGraw-Hill.

- Parra, T. (2016). Diseño de una planta de refinación y blanqueamiento de aceite comestible usado y aceite rojo de palma (Tesis de licenciatura). https://bibdigital.epn.edu.ec/bitstream/15000/15156/1/CD-6936.pdf
- Pérez, S. (2013). Desgomado de aceites vegetales por centrifugación. https://www.engormix.com/balanceados/foros/desgomado-aceites-vegetales-centrifugacion-t18367/
- Portal Académico CCH. Fichas de registro. https://portalacademico.cch.unam.mx/alumno/tlriid4/unidad3/procesamiento/fichas Registro#:~:text=Se%20les%20denomina%20as%C3%AD%20porque,%2C%20vi deotecas%2C%20etc.).
- Prokopenko, J. (1989). *La gestión de la productividad* (1ª ed.). Oficina internacional del trabajo.
- Prokopenko, J. (1998). Globalización, competitividad y competitividad y estrategias de productividad. *Boletín cinterfor, 1* (143), 33-70.
- Pyzdek, T. y Keller, P. (2014). The Six Sigma handbook (4° ed.). McGraw-Hill Education
- Raya, A., y Núñez, R. (2015). La productividad, un pilar importante en la ventaja competitiva de las organizaciones: una perspectiva para la gestión de los factores que influyen en la productividad empresarial. *Portal de La Ciencia*, 77-88.
- Rojas, M., Jaimes, L., y Valencia, M. (2018). Efectividad, eficacia y eficiencia en equipos de trabajo. *Espacios*, *39*(6) 113-126.
- Salazar, B. (2019). *Nivel Sigma y DPMO.* https://www.ingenieriaindustrialonline.com/gestion-de-calidad/nivel-sigma-y-dpmo/
- Sánchez, M., Hernández, J., Molina, H., y García, M. (2020). Colaboradores satisfechos productividad empresarial. Boletín Científico de La Escuela Superior Atotonilco de Tula, 7(14), 4-9.
- Sierralta, D. (2022). Efecto de la metodología Six Sigma para mejorar la productividad de una empresa de confección textil industrial (Tesis de licenciatura). https://repositorio.upla.edu.pe/bitstream/handle/20.500.12848/4124/T037\_742393 12 T.pdf?sequence=1&isAllowed=y
- Suárez, H. (2017). Empowerment como estrategia gerencial para mejorar la efectividad laboral. Revista Científica FIPCAEC (Fomento de La Investigación y Publicación En

- Ciencias Administrativas, Económicas y Contables). *Polo de Capacitación, Investigación y Publicación (POCAIP), 2*(3), 64-81.
- Tejero, J. (2021). *Técnicas de investigación cualitativa en los ámbitos sanitario y sociosanitario*. (1ª ed.). Ediciones de la Universidad de Castilla-La Mancha.
- Vargas, Z. (2009). La investigación aplicada: una forma de conocer las realidades con evidencia científica. *Revista Educación*, 33(1), 155-165
- Viana, B. (2022). Diseño de un modelo de control de calidad basado en la metodología Six Sigma para la florícola "Flores Mágicas CIA. LTDA (Tesis de licenciatura). http://repositorio.utn.edu.ec/bitstream/123456789/12919/2/04%20IND%20362%20 TRABAJO%20DE%20GRADO.pdf

### **Anexos**

**Anexo 1.** *Matriz de consistencia* 

| Problema principal                                  | Objetivo principal                                   | Hipótesis principal                                          | Variables                   | Método                     |
|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------|
| ¿En qué medida la                                   | Determinar en qué medida                             | H0: La aplicación de la                                      | Variable independiente: Six | Diseño de investigación:   |
| aplicación de la metodología                        | la aplicación de la                                  | metodología Six Sigma no                                     | Sigma                       | Experimental.              |
| Six Sigma incrementa la productividad en el área de | metodología Six Sigma<br>incrementa la productividad | incrementa significativamente la productividad en el área de | Dimensiones:                | Tipo de investigación:     |
| Producción de Grupo Pacific                         | en el área de Producción de                          | Producción de Grupo Pacific                                  | 1.1. Definir                | Aplicada.                  |
| Oil S.A.C., Lima, 2022?                             | Grupo Pacific Oil S.A.C.,                            | Oil S.A.C., Lima, 2022.                                      | 1.2. Medir                  | дрисаца.                   |
| Oii 0.7 (. 0., Eiiiid, 2022)                        | Lima, 2022.                                          | H1: La aplicación de la                                      | 1.3. Analizar               | Nivel de investigación:    |
|                                                     | Za, 2022.                                            | metodología Six Sigma                                        | 1.4. Mejorar                | Descriptivo correlacional. |
|                                                     |                                                      | incrementa significativamente                                | 1.5. Controlar              |                            |
|                                                     |                                                      | la productividad en el área de                               |                             | Enfoque de investigación:  |
|                                                     |                                                      | Producción de Grupo Pacific                                  |                             | Cuantitativo.              |
|                                                     |                                                      | Oil S.A.C., Lima, 2022.                                      | _                           |                            |
| Problemas secundarios                               | Objetivos secundarios                                | Hipótesis secundarias                                        |                             |                            |
| ¿En qué medida la                                   | Determinar en qué medida                             | H0: La aplicación de la                                      | Variable dependiente:       |                            |
| aplicación de la metodología                        | la aplicación de la                                  | metodología Six Sigma no                                     | Productividad               |                            |
| Six Sigma disminuye los                             | metodología Six Sigma                                | disminuye significativamente                                 |                             |                            |
| reprocesos en el área de                            | disminuye los reprocesos en                          | los reprocesos en el área de                                 | Dimensiones:                |                            |
| Producción de Grupo Pacific                         | el área de Producción de                             | Producción de Grupo Pacific                                  | 2.1. Reprocesos             |                            |
| Oil S.A.C., Lima, 2022?                             | Grupo Pacific Oil S.A.C.,                            | Oil S.A.C., Lima, 2022.                                      | 2.2. Eficiencia             |                            |
|                                                     | Lima, 2022.                                          | H1: La aplicación de la                                      | 2.3. Eficacia               |                            |
|                                                     |                                                      | metodología Six Sigma disminuye significativamente           |                             |                            |
|                                                     |                                                      | los reprocesos en el área de                                 |                             |                            |
|                                                     |                                                      | Producción de Grupo Pacific                                  |                             |                            |
|                                                     |                                                      | Oil S.A.C., Lima, 2022.                                      |                             |                            |
| ¿En qué medida la                                   | Determinar en qué medida                             | H0: La aplicación de la                                      |                             |                            |
| aplicación de la metodología                        | la aplicación de la                                  | metodología Six Sigma no                                     |                             |                            |
| Six Sigma incrementa la                             | metodología Six Sigma                                | incrementa significativamente                                |                             |                            |
| eficiencia en el área de                            | incrementa la eficiencia en                          | la eficiencia en el área de                                  |                             |                            |
| Producción de Grupo Pacific                         | el área de Producción de                             | Producción de Grupo Pacific                                  |                             |                            |
| Oil S.A.C., Lima, 2022?                             |                                                      | Oil S.A.C., Lima, 2022.                                      |                             |                            |

Grupo Pacific Oil S.A.C., Lima, 2022.

¿En qué medida la aplicación de la metodología Six Sigma incrementa la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022? Determinar en qué medida la aplicación de la metodología Six Sigma incrementa la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

H1: La aplicación de la metodología Six Sigma incrementa significativamente la eficiencia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022. H0: La aplicación de la metodología Six Sigma no incrementa significativamente la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022. H1: La aplicación de la metodología Six Sigma incrementa significativamente la eficacia en el área de Producción de Grupo Pacific Oil S.A.C., Lima, 2022.

Nota: Elaboración propia.

# **Anexo 2.** Formato de capacitaciones C-01

| Nomb   | re del encargado:            |                     |              |       |
|--------|------------------------------|---------------------|--------------|-------|
| Tema   | de la capacitación:          |                     |              |       |
| Fecha  | de la capacitación:          |                     |              |       |
|        |                              |                     |              |       |
| Por fa | vor, llene su información er | n la siguiente tabl | la:          |       |
| N°     | Nombre completo del          | Asistencia          | Calificación | Firma |
|        | participante                 |                     |              |       |
| 1      |                              |                     |              |       |
| 2      |                              |                     |              |       |
| 3      |                              |                     |              |       |
| 4      |                              |                     |              |       |
| 5      |                              |                     |              |       |
|        |                              |                     |              |       |
| 6      |                              |                     |              |       |
| 7      |                              |                     |              |       |
| 8      |                              |                     |              |       |
| 9      |                              |                     |              |       |
|        |                              |                     |              |       |
| 10     |                              |                     |              |       |

**Anexo 3.**Tiempos totales del proceso obtenidos de la simulación (en minutos)

| Replication | Average   | <br>Minimum    | <br>Maximum |
|-------------|-----------|----------------|-------------|
|             | 1 460.214 |                |             |
|             | 2 459.819 |                |             |
|             | 3 464.423 |                |             |
|             | 461.874   |                |             |
|             | 5 454.885 |                |             |
|             | 5 459.668 |                |             |
|             | 7 458.299 |                |             |
|             | 3 462.691 |                |             |
|             | 9 454.455 |                |             |
| 10          |           |                |             |
| 1:          |           |                |             |
| 12          |           |                |             |
| 13          | 3 454.22  | 015 454.22015  | 454.22015   |
| 14          | 452.080   | 706 452.080706 |             |
| 15          | 5 456.724 | 418 456.724418 | 456.724418  |
| 16          | 6 460.48  | 285 460.48285  | 460.48285   |
| 17          | 7 460.236 | 954 460.236954 | 460.236954  |
| 18          | 3 454.431 | 353 454.431353 | 454.431353  |
| 19          | 9 464.79  | 828 464.79828  | 464.79828   |
| 20          | 9 453.962 | 856 453.962856 | 453.962856  |
| 2:          | 1 459.593 | 391 459.593391 | 459.593391  |
| 22          | 2 461.746 | 325 461.746325 | 461.746325  |
| 23          | 3 457.028 | 057 457.028057 | 457.028057  |
| 24          | 465.180   | 751 465.180751 | 465.180751  |
| 2!          | 5 464.42  | 333 464.42333  | 464.42333   |
| 20          | 6 456.836 | 755 456.836755 | 456.836755  |
| 2           | 7 449.448 | 241 449.448241 | 449.448241  |
| 28          | 8 454.117 | 843 454.117843 | 454.117843  |
| 29          | 9 455.138 | 067 455.138067 | 455.138067  |
| 30          | ) 446.122 | 141 446.122141 | 446.122141  |
| 3:          | 1 460.17  | 801 460.17801  | 460.17801   |
| 32          | 2 455.451 | 269 455.451269 | 455.451269  |
| 33          | 3 452.344 | 169 452.344169 | 452.344169  |
| 34          | 454.781   | 797 454.781797 | 454.781797  |
| 3!          | 5 452.027 | 055 452.027055 | 452.027055  |
| 30          | 6 449.751 | 079 449.751079 | 449.751079  |
| 3           | 7 448.183 | 763 448.183763 | 448.183763  |
| 38          | 3 456.251 | 431 456.251431 | 456.251431  |
| 39          | 9 457.946 | 407 457.946407 | 457.946407  |
| 40          |           | 679 457.155679 | 457.155679  |
| 4:          | 1 458.625 | 758 458.625758 | 458.625758  |

| 42 | 449.164487 | 449.164487 | 449.164487 |
|----|------------|------------|------------|
| 43 | 461.475789 | 461.475789 | 461.475789 |
| 44 | 460.159212 | 460.159212 | 460.159212 |
| 45 | 460.467818 | 460.467818 | 460.467818 |
| 46 | 456.675867 | 456.675867 | 456.675867 |
| 47 | 459.814327 | 459.814327 | 459.814327 |
| 48 | 464.332261 | 464.332261 | 464.332261 |
| 49 | 457.937121 | 457.937121 | 457.937121 |
| 50 | 460.583045 | 460.583045 | 460.583045 |
| 51 | 453.544329 | 453.544329 | 453.544329 |
| 52 | 454.810364 | 454.810364 | 454.810364 |
| 53 | 458.096155 | 458.096155 | 458.096155 |
| 54 | 462.410795 | 462.410795 | 462.410795 |
| 55 | 455.983138 | 455.983138 | 455.983138 |
| 56 | 457.556968 | 457.556968 | 457.556968 |
| 57 | 464.729889 | 464.729889 | 464.729889 |
| 58 | 465.689497 | 465.689497 | 465.689497 |
| 59 | 453.564732 | 453.564732 | 453.564732 |
| 60 | 457.017264 | 457.017264 | 457.017264 |
| 61 | 469.298123 | 469.298123 | 469.298123 |
| 62 | 457.550152 | 457.550152 | 457.550152 |
| 63 | 458.365267 | 458.365267 | 458.365267 |
| 64 | 459.144042 | 459.144042 | 459.144042 |
| 65 | 457.231771 | 457.231771 | 457.231771 |
| 66 | 470.342168 | 470.342168 | 470.342168 |
| 67 | 456.729125 | 456.729125 | 456.729125 |
| 68 | 448.426608 | 448.426608 | 448.426608 |
| 69 | 462.598168 | 462.598168 | 462.598168 |
| 70 | 455.007372 | 455.007372 | 455.007372 |
| 71 | 454.457093 | 454.457093 | 454.457093 |
| 72 | 462.788032 | 462.788032 | 462.788032 |
| 73 | 458.778376 | 458.778376 | 458.778376 |
| 74 | 457.113466 | 457.113466 | 457.113466 |
| 75 | 450.799941 | 450.799941 | 450.799941 |
| 76 | 465.34049  | 465.34049  | 465.34049  |
| 77 | 458.747293 | 458.747293 | 458.747293 |
| 78 | 452.89161  | 452.89161  | 452.89161  |
| 79 | 464.736128 | 464.736128 | 464.736128 |
| 80 | 455.576255 | 455.576255 | 455.576255 |
| 81 | 462.351098 | 462.351098 | 462.351098 |
| 82 | 459.632984 | 459.632984 | 459.632984 |
| 83 | 449.109841 | 449.109841 | 449.109841 |
| 84 | 466.570382 | 466.570382 | 466.570382 |
| 85 | 453.043016 | 453.043016 | 453.043016 |
| 86 | 467.700863 | 467.700863 | 467.700863 |
|    |            |            |            |

| 87  | 444.105547 | 444.105547 | 444.105547 |
|-----|------------|------------|------------|
| 88  | 461.013184 | 461.013184 | 461.013184 |
| 89  | 457.01209  | 457.01209  | 457.01209  |
| 90  | 458.453326 | 458.453326 | 458.453326 |
| 91  | 451.158959 | 451.158959 | 451.158959 |
| 92  | 454.112615 | 454.112615 | 454.112615 |
| 93  | 452.057712 | 452.057712 | 452.057712 |
| 94  | 460.578144 | 460.578144 | 460.578144 |
| 95  | 457.255232 | 457.255232 | 457.255232 |
| 96  | 459.403876 | 459.403876 | 459.403876 |
| 97  | 459.757346 | 459.757346 | 459.757346 |
| 98  | 461.035843 | 461.035843 | 461.035843 |
| 99  | 459.478589 | 459.478589 | 459.478589 |
| 100 | 466.552932 | 466.552932 | 466.552932 |
| 101 | 455.271712 | 455.271712 | 455.271712 |
| 102 | 453.60031  | 453.60031  | 453.60031  |
| 103 | 455.901772 | 455.901772 | 455.901772 |
| 104 | 452.889035 | 452.889035 | 452.889035 |
| 105 | 459.834882 | 459.834882 | 459.834882 |
| 106 | 452.173861 | 452.173861 | 452.173861 |
| 107 | 462.36581  | 462.36581  | 462.36581  |
| 108 | 455.465659 | 455.465659 | 455.465659 |
| 109 | 460.792458 | 460.792458 | 460.792458 |
| 110 | 454.98215  | 454.98215  | 454.98215  |
| 111 | 457.754831 | 457.754831 | 457.754831 |
| 112 | 451.054879 | 451.054879 | 451.054879 |
| 113 | 460.697013 | 460.697013 | 460.697013 |
| 114 | 453.090004 | 453.090004 | 453.090004 |
| 115 | 459.487546 | 459.487546 | 459.487546 |
| 116 | 453.759853 | 453.759853 | 453.759853 |
| 117 | 449.20367  | 449.20367  | 449.20367  |
| 118 | 459.602105 | 459.602105 | 459.602105 |
| 119 | 460.628033 | 460.628033 | 460.628033 |
| 120 | 458.345369 | 458.345369 | 458.345369 |
| 121 | 456.94335  | 456.94335  | 456.94335  |
| 122 | 455.249085 | 455.249085 | 455.249085 |
| 123 | 461.925482 | 461.925482 | 461.925482 |
| 124 | 456.248588 | 456.248588 | 456.248588 |
| 125 | 459.995212 | 459.995212 | 459.995212 |
| 126 | 459.279254 | 459.279254 | 459.279254 |
| 127 | 443.490766 | 443.490766 | 443.490766 |
| 128 | 450.655218 | 450.655218 | 450.655218 |
| 129 | 464.09103  | 464.09103  | 464.09103  |
| 130 | 463.508354 | 463.508354 | 463.508354 |
| 131 | 460.137175 | 460.137175 | 460.137175 |
|     |            |            |            |

| 1  | 32 | 464.096912 | 464.096912 | 464.096912 |
|----|----|------------|------------|------------|
| 1  | 33 | 453.387266 | 453.387266 | 453.387266 |
| 1  | 34 | 463.001574 | 463.001574 | 463.001574 |
| 1: | 35 | 460.602044 | 460.602044 | 460.602044 |
| 1  | 36 | 459.336618 | 459.336618 | 459.336618 |
| 1  | 37 | 459.723205 | 459.723205 | 459.723205 |
| 1  | 38 | 461.673434 | 461.673434 | 461.673434 |
| 1  | 39 | 456.209612 | 456.209612 | 456.209612 |
| 1  | 40 | 456.317991 | 456.317991 | 456.317991 |
| 1  | 41 | 461.066243 | 461.066243 | 461.066243 |
| 1  | 42 | 466.058141 | 466.058141 | 466.058141 |
| 1  | 43 | 459.468652 | 459.468652 | 459.468652 |
| 1  | 44 | 454.998431 | 454.998431 | 454.998431 |
| 1  | 45 | 462.881554 | 462.881554 | 462.881554 |
| 1  | 46 | 450.097579 | 450.097579 | 450.097579 |
| 1  | 47 | 460.048781 | 460.048781 | 460.048781 |
| 1  | 48 | 456.433327 | 456.433327 | 456.433327 |
| 1  | 49 | 453.172825 | 453.172825 | 453.172825 |
| 1  | 50 | 454.097744 | 454.097744 | 454.097744 |
| 1  | 51 | 457.817658 | 457.817658 | 457.817658 |
| 1  | 52 | 467.631262 | 467.631262 | 467.631262 |
| 1  | 53 | 458.13902  | 458.13902  | 458.13902  |
| 1  | 54 | 460.551532 | 460.551532 | 460.551532 |
| 1  | 55 | 460.234691 | 460.234691 | 460.234691 |
| 1  | 56 | 456.00191  | 456.00191  | 456.00191  |
| 1  | 57 | 460.636078 | 460.636078 | 460.636078 |
| 1  | 58 | 455.6322   | 455.6322   | 455.6322   |
| 1. | 59 | 448.089852 | 448.089852 | 448.089852 |
| 1  | 60 | 464.759149 | 464.759149 | 464.759149 |
| 1  | 61 | 457.50153  | 457.50153  | 457.50153  |
| 1  | 62 | 463.530699 | 463.530699 | 463.530699 |
| 1  | 63 | 463.421062 | 463.421062 | 463.421062 |
| 1  | 64 | 461.299611 | 461.299611 | 461.299611 |
| 1  | 65 | 461.397426 | 461.397426 | 461.397426 |
| 1  | 66 | 459.970571 | 459.970571 | 459.970571 |
| 1  | 67 | 463.506185 | 463.506185 | 463.506185 |
| 1  | 68 | 456.893002 | 456.893002 | 456.893002 |
| 1  | 69 | 464.044426 | 464.044426 | 464.044426 |
|    | 70 | 456.192918 | 456.192918 | 456.192918 |
| 1  | 71 | 453.460967 | 453.460967 | 453.460967 |
|    | 72 | 465.601522 | 465.601522 | 465.601522 |
| 1  | 73 | 465.066711 | 465.066711 | 465.066711 |
|    | 74 | 461.574204 | 461.574204 | 461.574204 |
| 1  | 75 | 459.732652 | 459.732652 | 459.732652 |
|    | 76 | 455.686855 | 455.686855 | 455.686855 |
|    |    | <u> </u>   | <u> </u>   |            |

| 177 | 454.35172    | 454.35172  | 454.35172  |
|-----|--------------|------------|------------|
| 178 | 461.436496   | 461.436496 | 461.436496 |
| 179 | 458.501853   | 458.501853 | 458.501853 |
| 180 | 450.614512   | 450.614512 | 450.614512 |
| 181 | 467.005101   | 467.005101 | 467.005101 |
| 182 | 452.480411   | 452.480411 | 452.480411 |
| 183 | 467.937883   | 467.937883 | 467.937883 |
| 184 | 451.812345   | 451.812345 | 451.812345 |
| 185 | 457.423557   | 457.423557 | 457.423557 |
| 186 | 455.917487   | 455.917487 | 455.917487 |
| 187 | 449.424018   | 449.424018 | 449.424018 |
| 188 | 454.618378   | 454.618378 | 454.618378 |
| 189 | 457.462561   | 457.462561 | 457.462561 |
| 190 | 455.95974    | 455.95974  | 455.95974  |
| 191 | 467.313794   | 467.313794 | 467.313794 |
| 192 | 466.971686   | 466.971686 | 466.971686 |
| 193 | 454.289656   | 454.289656 | 454.289656 |
| 194 | 452.617144   | 452.617144 | 452.617144 |
| 195 | 460.339852   | 460.339852 | 460.339852 |
| 196 | 454.109908   | 454.109908 | 454.109908 |
| 197 | 462.455215   | 462.455215 | 462.455215 |
| 198 | 3 464.419087 | 464.419087 | 464.419087 |
| 199 | 465.605431   | 465.605431 | 465.605431 |
| 200 | 458.075602   | 458.075602 | 458.075602 |
| 201 | 451.27949    | 451.27949  | 451.27949  |
| 202 | 456.799235   | 456.799235 | 456.799235 |
| 203 | 3 456.243823 | 456.243823 | 456.243823 |
| 204 | 463.492998   | 463.492998 | 463.492998 |
| 205 | 457.589683   | 457.589683 | 457.589683 |
| 206 | 455.053191   | 455.053191 | 455.053191 |
| 207 | 465.019904   | 465.019904 | 465.019904 |
| 208 | 3 459.583215 | 459.583215 | 459.583215 |
| 209 | 461.975493   | 461.975493 | 461.975493 |
| 210 | 459.382473   | 459.382473 | 459.382473 |
| 211 | 458.128318   | 458.128318 | 458.128318 |
| 212 | 452.261773   | 452.261773 | 452.261773 |
| 213 | 3 457.798773 | 457.798773 | 457.798773 |
| 214 | 462.196915   | 462.196915 | 462.196915 |
| 215 | 452.251931   | 452.251931 | 452.251931 |
| 216 | 6 461.144499 | 461.144499 | 461.144499 |
| 217 | 465.064734   | 465.064734 | 465.064734 |
| 218 | 3 463.834986 | 463.834986 | 463.834986 |
| 219 | 452.747429   | 452.747429 | 452.747429 |
| 220 | 458.082478   | 458.082478 | 458.082478 |
| 221 | 462.180647   | 462.180647 | 462.180647 |
|     |              |            |            |

| 222 | 462.730631 | 462.730631 | 462.730631 |
|-----|------------|------------|------------|
| 223 | 458.065655 | 458.065655 | 458.065655 |
| 224 | 459.534674 | 459.534674 | 459.534674 |
| 225 | 450.242077 | 450.242077 | 450.242077 |
| 226 | 456.293714 | 456.293714 | 456.293714 |
| 227 | 451.332847 | 451.332847 | 451.332847 |
| 228 | 461.205292 | 461.205292 | 461.205292 |
| 229 | 457.658124 | 457.658124 | 457.658124 |
| 230 | 461.462674 | 461.462674 | 461.462674 |
| 231 | 457.443289 | 457.443289 | 457.443289 |

#### Anexo 4.

Encuesta de satisfacción

# Encuesta de satisfacción del cliente - Compra de aceites en botellas de 1 litro

¡Gracias por participar en esta encuesta! Tu opinión es muy valiosa para nosotros. Por favor, selecciona la opción que mejor describa tu experiencia con la compra de aceites en botellas de 1 litro.

# 1. ¿Con qué frecuencia compras aceites en botellas de 1 litro de la empresa Grupo Pacific Oil S.A.C.?

- a) Menos de una vez al mes
- b) Una vez al mes
- c) De dos a tres veces al mes
- d) Más de tres veces al mes

## 2. ¿Cuál es tu variedad de aceite favorito?

- a) Aceite de soya
- b) Aceite de palma
- c) Aceite de algodón

# 3. ¿Qué factores son más importantes para ti al comprar aceites en botellas de 1 litro de la empresa? (Puedes seleccionar múltiples opciones)

- a) Calidad del producto
- b) Precio
- c) Valor nutricional
- d) Certificaciones de calidad (orgánico, sin gluten, etc.)
- e) Sabor
- f) Opiniones y recomendaciones de otros clientes
- g) Otro factor (por favor, especifica)

| 4. En general, ¿estás satisfecho/a con la calidad de los aceites en botellas de 1 litro de la marca?                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Muy satisfecho/a                                                                                                                                                                           |
| b) Satisfecho/a                                                                                                                                                                               |
| c) Neutral                                                                                                                                                                                    |
| d) Insatisfecho/a                                                                                                                                                                             |
| e) Muy insatisfecho/a                                                                                                                                                                         |
| 5. ¿Cómo calificarías el precio de los aceites en botellas de 1 litro de la marca en relación con su calidad?                                                                                 |
| a) Muy económico                                                                                                                                                                              |
| b) Económico                                                                                                                                                                                  |
| c) Neutral                                                                                                                                                                                    |
| d) Costoso                                                                                                                                                                                    |
| e) Muy costoso                                                                                                                                                                                |
| 6. ¿Has tenido alguna experiencia negativa al comprar aceites en botellas de 1 litro de la marca? (por ejemplo, problemas de embalaje, productos dañados, fecha de vencimiento cercana, etc.) |
| a) Sí                                                                                                                                                                                         |
| b) No                                                                                                                                                                                         |
| 7. En caso de haber respondido "Sí" en la pregunta anterior, ¿puedes describir brevemente tu experiencia negativa?                                                                            |
| 8. ¿Recomendarías los aceites en botellas de 1 litro de la marca a otras personas?                                                                                                            |
| a) Definitivamente sí                                                                                                                                                                         |
| b) Probablemente sí                                                                                                                                                                           |
| c) No estoy seguro/a                                                                                                                                                                          |
| d) Probablemente no                                                                                                                                                                           |

- e) Definitivamente no
- 9. ¿Consideras importante que los aceites en botellas de 1 litro de la marca ofrezcan información detallada sobre los ingredientes y el proceso de producción en el etiquetado?
- a) Muy importante
- b) Importante
- c) Neutral
- d) Poco importante
- e) No importante
- 10. ¿Hay alguna sugerencia o comentario adicional que desees compartir sobre la compra de aceites en botellas de 1 litro de la marca?

¡Gracias por tu participación en esta encuesta! Tus respuestas nos ayudarán a mejorar nuestros productos y servicios.