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Executive Summary:

The objective of this paper is to better understand the impact that estimation
error in the parameters has on portfolio performance and to identify ways to reduce it.
To do so, we worked within the frame of Modern Portfolio Theory. Then, several
portfolio rules have been applied to 14 data sets. They were analyzed through
calculation experiments using MATLAB software. The ability of the various portfolio
rules to reduce the impact of estimation error depending on several variables were
measured and understood. The study shows that adding constraints to the portfolios is
an effective way to mitigate the impact of estimation error. This may allow constrained
portfolios to achieve greater expected utility compared to the tangency portfolio, but
equally weighted portfolios remain the best way to build a portfolio when little

information is available or when the portfolio is composed of many assets.

Resumen Ejecutivo:

El objetivo de este trabajo es comprender mejor el impacto que el error de
estimacion en los parametros tiene sobre el rendimiento de un portafolio e identificar
formas de reducirlo. Para eso, trabajamos en el marco de la Teoria Moderna del
Portafolio. A partir de esto, se han aplicado y analizado varias reglas de portafolio a 14
conjuntos de datos. Luego, se analizaron mediante experimentos de calculo utilizando
el software de MATLAB. Se midi6 y entendio la capacidad de las diversas reglas de la
cartera para reducir el impacto del error de estimacion en funcion de varias variables.
El estudio muestra que afadir restricciones a los portafolios es una forma eficaz de
mitigar el impacto del error de estimacion. Eso puede permitir que los portafolios
restringidos logren una mayor utilidad esperada en comparacion con el portafolio
tangente, pero el portafolio de pesos iguales sigue siendo la mejor manera de crear un
portafolio cuando se dispone de poca informacién o que el portafolio estd compuesto

por muchos activos.
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1. INTRODUCTION

Conceptualized in 1952 by Harry Markowitz, Modern Portfolio Theory (MPT) is
based on the principle that an optimal portfolio is the combination of the riskless asset
(F) and the tangency portfolio (T) composed solely of risky assets. Even though the
proportions between assets (F) and (T) are up to the investor —depending on his risk
profile—, the main idea is that in any case he can only invest in 2 types of assets: those
composing the tangency portfolio and the riskless one. Such an optimal portfolio is

called a two-fund portfolio rule.

As stated by the MPT, the goal of the investor is to maximize his utility through a
mean-variance (MV) analysis. His objective is to allocate his resources to build an
optimal portfolio: one that has the highest expected return (mean) for a given level of

risk, or equivalently, one that has the lowest risk (variance) for a given expected return.

1.1 Portfolio Optimization Problem: Theory

An investor is building a portfolio using a riskless asset (F) and n risky assets. The
rates of return on these assets at time t are called r, and r, respectively. It is assumed
that t > n and excess returns are defined as R, = r, — 1, 1, where 1 is a n-vector of
unit entries. Concerning its probability distribution, we assume that R, is independent
and identically distributed (i.i.d) over time. In addition, it is assumed that R, follows a

multivariate normal distribution with mean p and covariance matrix X.

Given the portfolio weights w,,, an n-vector on the risky assets, the excess return
on the portfolio at time t is R,,, = w,'R,, whose mean and variance are given by u, =
w,'n and of = w,'Zw,,. The parameters p and X will be referred as the “true

parameters”. The mean-variance utility of a portfolio p is given by

U(wy) =ty — 5 o7, (1)

where y represents the coefficient of risk aversion (risk profile) of the investor, which
satisfies 0 <y < oo. The goal of the investor is to solve the following portfolio
optimization problem (MV):

Maximize U(wp) =wy,'u— %WP’Z‘WP. (2)



When there is no parameter uncertainty (i.e. no estimation error) the investor knows u

and Z; in this situation he will build an optimal tangent portfolio (T) so that

1
wp = ;E‘lu. 3

The resulting expected utility of this solution is

_ bt

_2y'

-1

1
Ulwr) =5 I m 4

where 6% = u'2 1 is the squared Sharpe ratio of the tangency portfolio (T). For a
given risk aversion parameter y, U(wy) is the highest —theoretical— utility that an

investor’s portfolio can reach.

1.2 Portfolio Optimization Problem: Reality, ML estimation method

In real life, the investor neither knows u nor X, so if he were to build a portfolio for
the period t+1, he would first have to estimate these parameters. Using historical data,
the investor can use the maximum likelihood (ML) estimation method. We note that

better estimators exist, such as the unbiased ones, but that is not the theme of this paper.

Let @, be t monthly periods of observed returns data so that @, = {Rq, R, ..., R;}.
Based on this, the investor can now calculate the sample mean and covariance matrix i

and £ respectively defined as

i=1
and
1 t
F=1) R-mR-R). (6)
i=1

Statistically, these are the maximum likelihood estimators of the parameters u and X.
This means that by plugging-in these estimators into the original portfolio weights
formula, the investor can now calculate w, the maximum likelihood estimator of the

unknown portfolio weight vector w,. We replace p and Z in (3) by fi and £ so that

WT = f_lﬁ- (7)

< Im

The out-of-sample performance of such a plug-in portfolio w is given by

10



P ~ I y ~ I A~
UWr) =Wr p—5 Wy ZWr (8)

1.3 Introducing the concept of estimation error

Using the vector wy in (3) allows the creation of an optimal portfolio, leading to
the highest possible utility U(wy). But as explained earlier, the parameters used to
calculate w are unknown and must be estimated, leaving us with w in (7), a plug-in

estimator of wy.

For any portfolio p, using an estimator w,, instead of w, always comes with
unavoidable estimation error, which has a negative impact on the performance of the
portfolio. Estimation error arises from the uncertainty in the parameters u and X it is
the difference between the optimal portfolio weights vector w,, and its estimator w.,. It

causes the investor to not optimally invest his resources into the different risky assets.
If we knew the true parameters u and X, there would not be any estimation error.

Estimation error has a negative impact on the performance of the portfolio since
U(w,)—U(w,) > 0. 9
The loss function caused by using w, instead of w, is defined as
L(Wplwp) = U(Wp) - U(Wp)- (10)
From there, we have the expected loss function that is given by

p(Wp'Wp) = E[L(Wp'wp)] = U(Wp) - E[U(Wp)]' (11)

2. PORTFOLIO RULES AND IMPACT OF ESTIMATION ERROR ON THEM

2.1  The issue of estimation error under the classic two-fund portfolio rule
Kan and Zhou (2007) have studied the loss function associated with the use of
estimators rather than the use of the true parameters. They have showed that, for t

observations and n assets:
a) When the covariance matrix is known,

E[U(wy)z] = 2 - (12)
2y  2yt’

11



leading to the performance loss

p(Wr, Wr|E) = U(wy) — E[U(W,)| 5] = Zlyt (13)

b) When the mean is known,

92
E[U(W7)|p] = koj (14)
and
92
p(wr, Wrlw) = (1 - ko)ﬁ (15)
where
B t t(t—2)
ko_(t—n—Z)IZ_(t—n—l)(t—n—4)' (16)

c) When both the covariance matrix X and the mean u are to be estimated using
the ML estimation method,
0% nt(t — 2)

BV = ko~ o —n - DE—n— 2t —n—1 a7
and
L 67 nt(t —2)
pwn,Wr) = (L =ko) o+ De—n-D—n=—n O

2.2 The orthogonal three-fund portfolio rule and its estimation error

2.2.1 Introducing the orthogonal three-fund portfolio rule

As proposed by Kan and Zhou (2007), in the presence of estimation error, a solution
to mitigate the performance loss is to allocate a portion of the investment resources into
the minimum-variance portfolio (G), added to the tangency portfolio (T) and the risk-
free asset (F). Such a portfolio is called a three-fund rule portfolio.

In addition to that, Chavez-Bedoya and Rosales (2019) showed that the
performance loss mitigation resulting in the use of a three-fund portfolio is due to the
degree of orthogonality of its components. They introduced a three-fund portfolio that
mixes F, H and G, where H is a maximum performance zero-investment portfolio that

is orthogonal to G. This means that its objective is to maximize utility, that the value of

12



the sum of its assets is equal to zero and that there is no covariance between portfolio
H and portfolio G. The minimum-variance portfolio G is defined by

_ r 11 (19)
We= 1511
leading to the performance
Y
Uwg) = yg — Eag. (20)
The zero-investment portfolio H is defined by
1
wy =—Rp (21)
Y
where
g—yi Z I (22)
B 1x-11

The zero-investment portfolio (H) is also called “Hedge portfolio.” Its performance

measures are given by

2

v :
Uwy) = o= y? = u'Ru (23)
Y
where 2 is the squared Sharpe ratio of portfolio H.

Now that the portfolios G and H have been introduced, we can present the portfolio
Q, which is the sum of the latter two. As G and H are orthogonal, we have
wzIwy =0, (24)

meaning that the returns of G and H are uncorrelated so that
wo =we +wy;  U(wy) = Ulwg) + U(wy). (25)

Using the ML estimators of u and X, the plug-in estimators of portfolios G and H are

o= L o laa (26)
W, =———; Wy =—R[lU,
¢ =135 -11 H=Y u
where
. Y111yt
R:A—
1’y 11

Similarly, portfolio rule w, equals to the sum of the plug-in estimators of portfolios G
and H so that

13



2.2.2. The issue of estimation error under the orthogonal three-fund portfolio
Now that the orthogonal three-fund portfolio has been introduced, we can focus on

its expected out-of-sample performance and expected loss, given by:

a) When X' is known:
y , W n-1

E[U(Wg)IZ] = 16 59 +ﬂ_ 2t (28)
n—1
Wo|2) = . 29
p(wo, Wo|Z) = —— (29)
b) When p is known:
_ _ Y t=2 \, ¥
E[U(P0)I] = o — 3 () o + o 7 (30)
~ Y( n—1 > 5 P
) =\ 1—ky)—, 31
p(wq, Wo|p) AU oG + ( 1)2y (31)
where
t t(t—2)
=(——]||[2 - . 2
Ky (t—n—l)l (t—n)(t—n—3)l (32)
c) When both p and X are unknown and estimated using the ML estimation
method:
- Y( t—=2 ) ) P? 1
E = = —— LA S
[U(#)] = e = 3 (7 0% + ki 2 gy (33)
Soy_Yy(n—=1\, Y2 1
where

(n— Dt — 2)

b = =Dt —n=3)

(35)

14



2.3 The constrained three-fund portfolio rule and its estimation error

2.3.1 Introducing the idea of constraints

Let A be an m x n full row rank matrix with m < n and b # 0 be an m-vector so
that the augmented matrix [A b] has rank m and assumes AZ~1u # 0. For the optimal
MV portfolio to satisfy a set of m linear constraints given by Aw = b, we need to solve

the following optimization problem (MV2):

w, = argmax, {U(w) |Aw = b}
= argmax,, {w’u — %W'2W|AW = b}

— IUA'(AE )b 4 R 36
( ) + R (36)

where the matrix R is given by
R=21-314'(Ax"1A") 1Az (37)
The portfolio weights vector wy, the solution to MV2, is used to build portfolio Q,

called a constrained three-fund rule.

2.3.2 Relation between orthogonal three-fund rule portfolio and constrained portfolio

It is interesting to note that the orthogonal three-fund rule portfolio Q presented in
Section 2.2.1 is the solution to a specific case of the MV2 optimization problem in
which m=1 and b=1; there, A is a 1 x n all-ones matrix. That is why from now on

portfolio Q will be the name of the solution to MV2 showed in equation (36).

Portfolio Q, formerly presented in Section 2.2.1, is a particular case and can be
expressed in a more general way. As stated earlier, Q is the sum of a minimum-variance
portfolio G and a maximum performance portfolio H. The portfolios G and H also have
been introduced earlier, but here again we can show their expressions in a more general
way:

Portfolio G is the solution to the following optimization problem:
w¢ = argmin,,{c2 | Aw = b}
= argmin,, {w'Zw|Aw = b}

= X" 14'(AZ71A4)1b. (38)

15



Portfolio H is the solution to the following optimization problem:
wy = argmax,, {U(w)|Aw = 0}

= argmax,, {w’u - %w’2w|Aw = 0}

1

= ;Ru. (39)

For any vector b, w;Ewy = 0, which means that the portfolios G and H are
orthogonal. Consequently, portfolio Q is the sum of the portfolios G and H and its
performance is the sum of the individual performances as showed in equation (25).
From now and throughout the remainder of this paper, we respectively replace the
specific cases (19) and (21) by their more general expression showed in the equations
(38) and (39).

With the ML estimation method, we use the sample mean f& and covariance matrix
X to get a plug-in estimator of wy!
- - - 1_
Wo =£-14'(A214") b + _RR, (40)
where

R=Z'-F-4(af-1a) a1 (41)

is the estimator of matrix R in (37).

2.3.3. The issue of estimation error under the constrained portfolios
Now that the notion of constrained portfolios has been introduced and that its
relationship with the orthogonal portfolios is clearly established, we can focus on the

expected out-of-sample performance and expected loss functions of the constrained

portfolio Q.
a) When X' is known:
. Y y? n-m
E[U(Wo)IZ] = ue —502 +E— oyt (42)
N n—m
p(wQ, wQ|Z) = v (43)
b) When u is known:
_ Y t—2 P?
BU@o)lid = o =3 (r—oo—3) % 5y (44)

16



_ Y n—m P?
p(Wo, Wolw) = E(m) og +(1- Cl)ﬂ' (45)

where

¢ = (;) lz (e —2) (46)

t—nm+m-—2 C(t—n+m-D(t—-n+m-4)|

¢) When both g and X are unknown and must be estimated:

" v( t—2 )2 1
E[u = — = (——— — ——, 47
. Y n—1 )2 P2 1
, = — 1_ - 5. 48
p(we, W) 2(t—n+m—2 o +(l-c)yrtay, (48)
where
(n—m)t(t—2)

o (49)

:(t—n+m—1)(t—n+m—2)(t—n+m—4)'

Note: for the reasons explained in Section 2.3.2 and to avoid redundancies, we now
respectively replace the specific cases (28), (29), (30), (31), (33) and (34) by their
more general expressions (42), (43), (44), (45), (47) and (48). This means that the
findings made for the constrained portfolios also apply to the orthogonal portfolio, as

the latter is only a specific case of the former.

3. PERFORMANCE-LOSS OF THE PORTFOLIO RULES

3.1 Expressions used to calculate the expected absolute and relative performance
loss

When the parameters g and X are unknown, the expression of the expected absolute
loss is given by (11). The expected absolute loss of a portfolio p as a function of which

parameters p and X are known is given by the following expressions.

a) When X' is known, meaning that the loss is due to the use of fi instead of u, the

expression of the expected absolute loss is:
p(Wp'Wplz) = E[L(Wpprlx)] = U(Wp) - E[U(Wplz)]' (50)
b) When u is known, meaning that the loss is due to the use of £ instead of X, the

expression of the expected absolute loss is:

p(wy, Wp|pt) = E[L(wp, Wy |n)] = U(w,) — E[U(W,|p)]. (51)

17



The expressions of the expected relative loss of a portfolio p as a function of which

parameters are known are given by:

p(Wp'Wplz) .

%L, (w,, Wy|Z) = o) 100, (52)
p

o5, T, —M 100 53

WLy (Wp, Wy 1) = u(w,) * 100, (53)
p

YoLp(Wp, Wy,) = p(UuEp—‘;w)p) *100. (54)
p

These are the percentage loss expressions of the expected-out-of-sample performances
from holding portfolios whose parameters have been estimated -through ML
estimators— instead of using the true parameters. These expressions are important
because they are the tools that we will use through the document to calculate the
expected utility of the portfolios and to compare their performances.

E[U(w,)] = U(w,) * (1 - %Lp(wp'wp)) (55)

The expected utility of a portfolio p is given by expression (55). This depends on the
maximum utility of the portfolio and its expected relative loss. The expected utility is

what ultimately defines the performance of a portfolio.

3.2 General observations and considerations for the investor

In this section, we describe the influence of different variables on estimation error
and their impact on the performance of the portfolio rules presented above. The studied
variables are: historical return periods, Sharpe ratio and number of assets in the
portfolio. For comparability of the results, the coefficient of risk aversion will be held
constant throughout the document with y=3. Whenever we make a statement about a
variable, it is implied that it is for ““all other things being equal.” Unless otherwise stated,
the following findings apply to all the portfolios introduced earlier, hence the use of p

in the expressions.

3.2.1 Periods of historical return
Including more periods of historical returns (greater t) to calculate the ML

estimators of g and £ —as described in (5) and (6)— allows those estimators to be closer
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to the true parameters. Thus, the larger the sample size t, the smaller the estimation
error, resulting in a reduction in %L,(w,, W, ). This means that an investor should

gather as much data as possible concerning the assets he wants to invest in.

3.2.2 Sharpe ratio of the risky-assets portfolios
Throughout this paper, whenever it comes to the Sharpe ratio of the constrained
portfolios Q, we will use yr —which is actually the Sharpe ratio of portfolio H, part of Q

— because it is the main driver of the actual constrained portfolios’ Sharpe ratio.
a) Loss due to the use of fi.

The expected absolute loss due to the use of f instead of u —p(w,, W, |Z)- is not
affected by the Sharpe ratio of the risky-assets portfolio. It is constant and
independent from it, as shown respectively in the equations (29) and (43) for the
tangent and the constrained portfolios. But as an increase in the Sharpe ratio of the

risky-assets portfolio leads to a higher maximum utility, as shown by (4), this also

leads to a reduction in the relative loss %L, (w,, W, |X).

b) Loss due to the use of £

Ceteris paribus, we can see in the equations (15) and (45) —for the tangent and the
constrained portfolios, respectively— that the higher the Sharpe ratio of a portfolio
is, the higher p(w,, W, |p) will be. The latter expression is the expected absolute
loss due to the use of £ instead of the true parameter X. As shown in (14) and (17)
for the tangent portfolios and in (45) and (48) for the constrained ones, for a given
increase in the Sharpe ratio, p(w,, W,|p) increases parallelly to the expected
absolute loss due to estimation error for both parameters, expressed by p(wp, Wp).
However, for the tangent portfolio, the expected relative loss due to the use of
X —expressed by %Ly (wy, Wr|p)— is constant no matter the Sharpe ratio. This can
be explained by the fact that an increase in the Sharpe ratio leads to a higher
maximum utility, offsetting the higher expected absolute loss; hence the unchanged
expected relative loss, which is the relation between the expected absolute loss and

the maximum utility of the portfolio as shown in (53).
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In the case of the constrained portfolios, %L, (wq, W,|u) decreases when the
Sharpe ratio is higher, meaning that the increased maximum utility is higher than
the increment of p(wg, W, |p). The orthogonality and the use of the minimum-
variance portfolio in the constrained portfolios allow them, by design, to have a
lower estimation error in the covariance matrix £ compared to the tangent portfolio,
thus reducing the performance loss due to the use of £ . We can also note that the
Sharpe ratio of a constrained portfolio is always lower than the one of an equivalent

(with the same set of assets) tangent portfolio.

c) Loss solely due to the interactive effect from using both estimators fi and £

Similarly, we can see that the expected absolute loss solely due to the interaction
from using both estimators is constant and independent from the Sharpe ratio. This
is shown by deducting (29) and (31) from (34) for the tangent portfolio, and by
deducting (43) and (45) from (48) for the constrained portfolio.

d) Loss due to the use of the two estimators fi and £

Finally, we notice that even though p(w, W, ) increases with the Sharpe ratio —as
shown in (18) and (48) for the tangent and the constrained portfolios, respectively—
%L,(w,,W,) decreases. Again, since the maximum utility increases with the
Sharpe ratio, this leads to a reduction in the relative percentage loss. The bottom
line is that the Sharpe ratio has a positive effect on %L, (w,, w,,) as it reduces it.
This is consistent with the modern portfolio theory since the Sharpe ratio is an

important indicator used in the mean-variance analysis framework.

3.2.3. Number of assets in the portfolios

Including more assets in the risky portfolio increases the chance for estimation error

~

in @ and £, increasing both p(w,,w,) and %L,(w, W,), which leads to a

performance loss. However, in real life, increasing n can also improve the Sharpe ratio

which improves the maximum utility of the portfolio. If the newly included assets are

good enough, this improved Sharpe ratio can actually lead to a reduction in

%L, (w,, W), compensating the increment of p(w,, w,,). But even in the case where

both p(w,, W, ) and %L, (w,, W, ) increase (which is not what the investor wants) with

the addition of new assets, these higher expected absolute and relative loss can be offset
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by the higher maximum utility made possible by the improved Sharpe ratio. At the end
this can lead to a greater expected utility despite a worse p(w,,, W, ) and %L, (w,, ;).
In other words, the expected utility of a given portfolio can be higher than the one of
another portfolio that has both a lower p(w,, w,) and %L, (w,, W,). This means that
an investor should only include more risky assets in his portfolio if it increases its

Sharpe ratio.

In addition to the explanations involving the equations related to the portfolios,
Table 3.1 illustrates some of the analysis that have been explained about the tangent
portfolios. It shows the relative performance loss in tangent portfolios due to the
different types of estimation errors —using fi or £ or both— and its evolution relatively
to different variables: number of assets and amount of information available. There are
two panels, on the left, Panel A corresponds to portfolios with a Sharpe ratio of 0.2,

while Panel B shows portfolios with a Sharpe ratio of 0.4.
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Table 3.1. %Lp(wp, Wp): percentage (%) loss of expected utility in tangent portfolios

due to estimation errors in the means and covariance matrix of returns.

(L007) noyy pue uey Aq paruesald [ ATV U0 poseq ‘UONBIOQR[S SIOYINE :90IN0S

LY SY 019 1879 SSTE 08¥ TH 191 6€+T 1879 170€1 08¥
1S+9 0€ 11 18°6 ot ¢ 09¢ 19°82C 61°S¥ 18°6 19°¢LT 09¢
867601 69°LT ST'LI 01°59 0bzT L€°88€ LLOTT SI'LI 09T |ove
§9¢ee 16°LY1 €5°6¢ [T0¢1 0TI 10°891°1 v9° 166 £5°6¢ €8°0TS 0TI

86°668°T | 68°T0E°T LY9EE 09T 09| st 166859 | LS'TITS L979€€ LYTHO'T |09 | ST
9591 00'1 vS'T T0°€T 08¥ 79'8¢ 00t ¥S'T 80°CS 08¥
89'TT 181 1$°¢ 9¢°L1 09¢ 61°08 €TL 16°¢ vt 69 09¢
16°S¢€ Ty $9°¢ +09T (144 L99TT $8791 SSES LTH0T 0tC
L8H8 +8°81 S6€l 80°CS 0TI ¥9°L6T 9¢°GL S6€l €€'80T 0TI
0thT 98°96 66°TH LTH01 09| o1 TULYS 9t°L8E 66°Th L99TY 09| oI
78 8T°0 €1 159 08¥ 64T 1 €1 £0°9T 08¥
00711 050 18°1 898 09¢ bS '8¢ 10¢ 18°1 wLve 09¢
10°LT SI'T ¥8'T T0°€T 0k €565 199 ¥8'T 80°ZS 0tz
6€°LE 06t &) +0°9C 0TI €T0ET 79°61 ¥h'9 LTH0T 0Tl
r1'16 W v9°91 80°CS 09| ¢ 99°1¢ 69°68 +9°91 €€'807 09| ¢
e 90°0 $9°0 09°C 08¥ I€11 vT0 $9°0 ol 08¥
9 110 88°0 LY'€ 09¢ 0T'ST €70 88°0 68°€1 09¢
189 ST0 Sel 1T$ (124 LT'€T 66°0 Se'l €870 0t
LEYT 01 €6'T ol 0TI 698t 60t €6'C LYTY 0Z1
60°TE ot't $8°9 €8°0 09| T 08°L0T 19°L1 689 €Ce8 09| ¢
SLT 700 €r0 0€'T 08¥ €Ls 60°0 v 0 17§ 08¥
9¢C £0°0 8570 bLT 09¢ 89°L 91°0 850 ¥6'9 09¢
85°¢ 60°0 6870 09°C 0rzT 9911 9¢€°0 6870 ol 0t
L¥'L LED 06T 1T$ 0TI 61+C 91 061 €870 0Tl
LTI SSl €Y ol 09| 1 SI'Ts 819 €y LY 1Y 09| 1
¥'0=0 co=4
As@ “La)-Los, uonoeIANUL (1] L) 479, (7] mdm)iqo,| 7 u ?P\.:.ivsqccco:oﬁuuﬁ ()4 m “-m)L79/ (z]tm L)Ll 7 u

d [eued

V [Pued

22



It is observed that the amount of information has a positive effect on the
performance relative loss because it is reduced as t increases. As shown in the 3™
column of each panel in Table 3.1, Panel B’s %L (wy, wr|X) is always lower than that
of Panel A —in which the Sharpe ratio is lower. By comparing the 4" column of both
panels, it can be observed that %Ly (wy, W) remains the same whether 6 = 0.2 or
6 = 0.4. As shown in “Interaction” in the 5" column —which is calculated by deducting
the 3 and 4™ column from the 6™ column—, the relative performance loss due to the
interactive effect from using both estimators decreases as the Sharpe ratio increases.
Finally, by comparing the two panels we can see that %L (w, W) decreases when the

Sharpe ratio of the portfolios is higher.

For further clarification, we will now only focus on the expected relative loss
%L, (w,, W,) since this is what determines the final performance of the portfolio. We

will only discuss the expected absolute loss if it helps to understand the behavior of the

portfolios.
4. COMPARING THE PORTFOLIOS’ PERFORMANCES

In this section, based on our numerical experiences’ results, we compare the
percentage loss of expected out-of-sample performance due to estimation error of
sample tangent portfolios with the one of sample constrained portfolios. Later, we
compare their expected utility. To perform this analysis, we used 14 data sets to create
14 sample tangent portfolios and 14 sample constrained portfolios that we compared to
each other.

Composition of the Data Sets (DS) :
-DS1 is composed of 6 portfolios formed on size and book-to-market. It contains 1,110

monthly returns and starts in July 1926.
-DS2 is composed of 6 portfolios formed on size and momentum. It contains 1,104

monthly returns and starts in January 1927.

L All data can be found in the following data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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-DS3 is composed of 10 industry-based portfolios. It contains 1,110 monthly returns
and starts in July 1926.

-DS4 is composed of 24 portfolios formed on size and momentum, originally composed
of 25 portfolios but one was deleted because data was missing. It contains 1,104
monthly returns and starts in January 1927.

-DS5 is composed of 25 portfolios formed on size and book-to-market ratio. It contains
1,110 monthly returns and starts in July 1926.

-DS6 is composed of 25 portfolios formed on book-to-market ratio and operating
profitability. It contains 666 monthly returns and starts in July 1963.

-DS7 is composed of 25 portfolios formed on size and investment. It contains 666
monthly returns and starts in July 1963.

-DS8 is composed of 25 portfolios formed on size and operating profitability. It contains
666 monthly returns and starts in July 1963

-DS9 is composed of 30 industry-based portfolios. It contains 1,110 monthly returns
and starts in July 1926.

-DS10 is composed of 32 portfolios formed on size, book-to-market ratio and
investment. It contains 666 monthly returns and starts in July 1963.

-DS11 is composed of 32 portfolios formed on size, book-to-market ratio and operating
profitability. It contains 666 monthly returns and starts in July 1963.

-DS12 is composed of 32 portfolios formed on size, operating profitability and
investment. It contains 666 monthly returns and starts in July 1963.

-DS13 is composed of 40 industry-based portfolios, originally composed of 49
portfolios but 9 were deleted because data was missing. It contains 1,110 monthly
returns and starts in July 1926.

-DS14 is composed of 70 portfolios formed on size and book-to-market ratio, originally
composed of 100 portfolios but 30 were deleted because data was missing. It contains
1,110 monthly returns and starts in July 1926.

As explained above, the tangent and constrained portfolios were elaborated with
the exact same sets of assets, so that the only difference between these portfolios is the
resources allocated to them, their weights vector. The comparison between tangent and
constrained portfolios has been made for different values of t periods of monthly
historical returns: with t=60, t=120, t=240 and t=360 and t=480. The portfolios’

composition goes from n=6 to 70 assets. Each asset is a portfolio composed of all the
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NYSE, AMEX and NASDAQ stocks and is formed on various criteria such as size
(market equity), book-to-market equity ratio, operating profitability (operating profit
divided by book equity), investment and industry.

For a given set of assets, we define the differential loss as the difference between
the loss of expected utility using a tangent portfolio and the loss of expected utility when

using a constrained portfolio (with a given number of constraints).

a) When X' is known:
A%(T,Q|2) = %Ly (W, Wr|Z) — %Ly (wo, W|Z), (56)

where %Ly (wr, Wr|Z) and %Ly (w,, Wo|Z) are the expressions of (52) using a

tangent and a constrained portfolio, respectively.

b) When u is known:
A%(T, Q1) = %Ly (Wr, Wrlw) — %Lo(Wo, Wq 1), (57)

where %Ly (wr, Wr|p) and %Ly (w,, W, |u) are the expressions of (53) using a

tangent and a constrained portfolio, respectively.

c) When none of the parameters p or X is known:
A%(T, Q) = %Lr(wr, Wr) — %L (WQ: WQ); (58)

where %Ly (wr, Wr) and %Ly (wq, W) are the expressions of (54) respectively
using a tangent and a constrained portfolio. Equation (58) is the differential loss
between a tangent and a constrained portfolio for a given set of assets. For example,
A%(T, Q) > 0 signifies that %Ly (wr, W) is higher than %Lq, (wg, Wy), meaning
that the constrained portfolio is superior to the tangent one in term of relative loss-

performance, and vice versa.

4.1 Comparing the tangent and the constrained portfolio percentage loss

In this section, we compared the performance percentage loss of the tangent and
constrained portfolios using our 14 sets of assets. To ease the comparison between both
portfolios, the sample constrained portfolios were elaborated with parameters m = 1
and b =1 as in the orthogonal portfolio presented in Section 2.2. For the reasons

explained in Section 2.3.2, the findings obtained using these parameters also hold with
25



other parameters and therefore with any constrained portfolio Q of the type presented
in Section 2.3.

a) 4%(T, Q|X)

The results concerning the differential loss due to the use of @& are not interesting
because the expressions of the relative loss knowing X are very similar in both the
tangency and constrained portfolios, as we can observe in (13) for the tangency

portfolio and in (43) for the constrained portfolios.

b) 4%(T, Q|w)

When we compared the performance loss of the 14 tangent portfolios with that of
the 14 constrained ones, we noticed that 4%(T, Q|u) is always positive. It seems
to indicate that constrained portfolios give better results than the tangent portfolios
when it comes to performance loss due to the use of an estimator of the covariance
matrix Z. Also, all other things being equal, the differential loss of performance
due to the use of £ seems to increase with the number of assets n in the portfolio,
and it tends to zero as the information available t increases. The following tables
report the results obtained concerning 4%(T, Q|u) and its impact on the expected
utility for the 14 data sets.

Table 4.1. A%(T, Q|w): differential loss (%) between 14 tangent and constrained
portfolios due to the use of an estimator of X as a function of the number of assets

n and the amount of information available t.

A%(T, Q)
DS |DS1|{DS2| DS3 | DS4 | DS5 | DS6 | DS7| DS8 | DS9 | DS10| DS11| DS12 | DS13 | DS14
t n=6|n=6{n=10{n=24| n=25 (n=25\n=25| n=25 | n=30 | n=32|n=32| n=32 | n=40 [ n=70

60 5.20(7.43124.82198.39|110.34({88.18(91.16/141.92|427.99|1258.45|255.19| 212.42 [1946.75| -

120 |1.48|2.38| 6.73 |13.45] 14.03 [11.13[{12.29] 20.27 | 44.46| 2091 | 20.21 | 16.10 | 78.06 [243.53

240 [0.53(0.93 239 3.58( 3.61 [ 293|344 575 | 11.09| 5.02 | 475 | 3.78 | 15.76 | 15.20

360 [0.31(0.57( 141191 190 | 1.56|190( 3.17 | 583 | 2.04 | 247 | 197 7.82 | 549

480 10.22(041/1 099128 1.26 [ 1.05(129] 2.16 | 3.88 | 1.76 | 1.64 | 1.31 5.05 | 3.00
Source: authors' elaboration

Table 4.1 shows that due to the properties of the constrained portfolios,
A%(T, Q|p) is always positive, regardless of the amount of information available
or the number of assets in the portfolios. We saw in Section 3.2.2 that the
orthogonality and the use of the minimum-variance portfolio in the constrained

portfolios allow them, by design, to have a lower estimation error in the covariance
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matrix ¥ compared to the tangent portfolios. This explains why the performance

loss due to the use of £ is better when using a constrained portfolio rather than a

tangent one, as Table 4.1 supports. This reduced performance loss can allow the

constrained portfolio to reach a higher expected utility than the tangent one. The

following two tables show the expected utility obtained for the tangent and the

constrained portfolios when p is known.

For reasons of readability, through this paper, the expected utility will always be
multiplied by 100 in the tables.

Table 4.2 E[U(wr|p)]: expected utility of the tangency portfolios knowing u

depending on the number of assets n and the amount of information available t.

E[U (W) |p]

DS |DSI1|DS2|DS3|DS4|DS5|[DS6| DS7 | DS8 | DS9 | DSI0O[DS11|DS12(DS13| DS14
t n=06|n=06(n=10{n=24|n=25|n=25| n=25 (n=25|n=30| n=32 | n=32n=32|n=40|n=70

60 098(1.03]|0.36|-4.36|-4.78(-6.93|-13.68(-4.58(-6.52|-39.25(-27.60]-51.35(-46.49] -

120 1.15]11.20] 054 1.08|1 090 1.30( 257 | 086|024 | 0.44 | 0.31 | 0.57 | -0.81 |-25.28

240 |1.20(1.25]059|187|1.67|242] 479 [1.60[090| 3.81 | 2.68 | 498 | 0.96 | -0.12

360 1.22]1127]061]|203|182|2.64( 521 |1.75(1.02( 437 3.07 | 571 | 1.21 | 1.30

480 1.2211.28]0.61]2.09]| 1.88|2.73( 539 | 1.80( 1.06| 458 | 3.22 | 6.00 | 1.30 | 1.72

Source: authors' elaboration

The expected utility of the tangent portfolio shown

in Table 4.2 is used as a

benchmark against which the performances of the constrained portfolios are

compared. The cells in which the expected utility of the tangency portfolio is higher

than that of the constrained portfolios have been highlighted in grey.

Table 4.3. E[U(Wq|p)]: expected utility of the constrained portfolios knowing p

depending on the number of assets n and the amount of information available t.

E[U(Wg)lu]|

DS |DS1{DS2|DS3|[DS4|DS5|DS6| DS7|DS8 | DS9|DS10|DSI1|DS12|DSI13| DSI14
t n=06(n=6|n=10|n=24|\n=25|n=25[n=25|n=25\n=301 n=32|n=32(n=32|n=40| n=70

60 1.04] 1.1210.50|-2.11(-2.50]|-4.22(-7.25|-1.56]-1.35|-23.07(-17.18]-33.90(-15.20 -

120 |1.16] 1.2210.57(1.35]1.16]|1.58|2.83[1.06]0.66| 1.32 ] 095 | 1.49 | 029 | -19.43

240 |1.201 1261059 190(1.71(2441430(145|1091| 357 | 264 | 475 | 1.02 0.24

360 |1.2111.27(060|201(1.82(261[459|153]095]| 396 (293 | 531 | 1.13 1.42

480 |1.22]1.28(060|206(1.87(2.68[4.70(1.57|097| 4.11 | 3.04 | 552 | 1.17 1.78

Source: authors' elaboration

When comparing Table 4.3 with Table 4.2, it can be observed that the expected

utility of the constrained portfolios is always higher than the one of the tangent
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portfolios when t < 120 and knowing p. When more information is available, the
expected utility of the tangent portfolios tends to be higher than the one of the
constrained portfolios. It means that the constrained portfolios’ ability to reduce
estimation error when using an estimator of X is more significant when the
information available is lower. The cells in which the expected utility of the
tangency portfolio is higher than that of the constrained portfolios have been

highlighted in grey.

¢) 4%(T, Q)

Constrained portfolios seem to lead to a lower relative loss of performance than the
tangent ones when the number of assets composing them is reduced. 4%(T, Q) is
positive when n is lower but is more likely to be negative as n increases. The
threshold seems to be around n=25. This can be explained by the fact that a higher
n allows the two portfolios to reach a higher Sharpe ratio, leading to a higher
maximum utility in both; however, the tangent portfolio is entirely oriented into
Sharpe ratio maximization, as opposed to the constrained portfolio that allocates a
part of its resources into the minimum-variance portfolio G that enters its
composition. This signifies that when n is already high, —~which means that the
portfolio is already highly diversified— the marginal reduction in variability of Q
due to the increased diversification is lower than the marginal increase in return.
This makes the minimum-variance portfolio G used in the constrained portfolio
redundant, dragging its Sharpe ratio down and making its maximum utility lower
than the one of the tangent portfolio. As a result, p(w,,, w,,) is distributed among a
higher maximum utility with the tangent portfolio, in which the Sharpe ratio and
maximum utility increase faster than in the constrained portfolio when assets are
added in the portfolios’ set; hence the obtention of a higher %L, (w,, W, ) in the
constrained portfolio than in the tangent one when n is already high. To put it
simply, 4%(T, Q) is sensitive to the relation between the maximum utility of the
constrained portfolio and the one of the tangent portfolio. Based on our results, it
seems that 4%(T, Q) is negative —indicating that the relative performance loss of
the constrained portfolio is worse than the one of the tangent portfolio— when the
maximum utility U(w,,) of the constrained portfolio represents around 85% or less

of the maximum utility U (w) of the tangent portfolio. The results of our numerical
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experiments on A4%(T, Q) are presented in Table 4.4. The top part shows the
differential loss between the two portfolios, the bottom part shows the
characteristics of the portfolios: their Sharpe ratio, their maximum —potential—

utility and relation between them.

Table 4.4. A%(T, Q): differential loss (%) between 14 tangent and constrained
portfolios due to the use of both estimators fi and £ and depending on the

number of assets n and the amount of information available t.

A%(T, Q)

ps | DS1 | DS2 | DS3 [ DS4 | DS5 [ DS6 | DS7 | DS8 | DS9 | DS10 | DS11 | DS12| DS13 | DS14
t n=6 | n=6 | n=10n=24|n=25|n=25|n=25n=25|n=30|n=32|n=32|n=32| n=40 | n=70

60 47.72148.38 |137.71|258.81{324.73(227.05| 78.32 | 67.53 |495.25|299.85[465.81(294.53|2967.60 -
120 16.58 [ 16.93 | 37.36| 27.65|32.38|22.09| 2.15 [-16.78|-14.46] 594 | 16.86| 10.62 | -52.61 |690.81
240 693 | 7.10 | 13.76| 6.60 | 7.60 | 5.10 | -0.78 | -9.17 |-12.58| -0.85 [ 1.74 | 1.06 | -24.81 | 31.26
360 435 447 | 828 | 340 | 390 | 260 [ -0.74 | -6.05 | -8.66 | -093 | 0.45 | 0.26 | -1540 | 10.73
480 3171 326 | 590 | 223 | 255 1.70 | -0.61 | -450 | -6.54 | -0.80 | 0.13 | 0.06 | -11.12 | 5.77

Characteristics of the portfolios
9'[‘ 0.27310.279(0.194 [ 0.366 0.348 | 0.419] 0.589 | 0.341 | 0.264 [ 0.550| 0.461 | 0.629 | 0.298 | 0.376
ll) 0.23410.221] 0.092 | 0.307 [ 0.294 [ 0.374 0.496 | 0.250| 0.148 | 0.464 [ 0.400 [ 0.560 | 0.188 | 0.344
U(wr) 124 [ 1.30 [ 063 | 223 | 2.02 | 293 | 5.78 | 1.94 | 1.16 [ 505 | 3.55 | 6.60 148 | 2.36
U(wq) 1241 1291 061 | 217 | 1.98 | 284 | 498 | 1.64 | 1.02 | 444 | 3.29 | 6.00 1.26 | 2.35
U(wq)

U(wr) 99.5%99.6%(97.5%|97.3%| 97.8%| 97.2%| 86.2%| 84.8%| 87.7%| 88.0%| 92.6%| 90.8%| 85.6% |99.5%

Source: authors' elaboration

All cases in which 4%(T, Q) are negative are highlighted in grey. As stated above,
we notice that these cases tend to happen when the number of assets is high (n >
25), and more specifically when the maximum utility of the constrained portfolios
represents 88% or less of the maximum utility of the tangent portfolios. This is
depicted in the last row of Table 4.4. As seen in the second row of Table 4.4, the
constrained portfolio seems to always lead to an overall lower %L, (wp,v’i/p) than
the tangency portfolio when the number of periods of historical returns is small
(t < 60). The lower the information amount, the higher the estimation error risk,
and as the constrained portfolio is designed to mitigate estimation errors, it follows
that this portfolio does better than the tangent one in a situation of high estimation
error.

On the contrary, and as seen before, the estimators become more precise as t
increases. This means that estimation error tends to O when t — oo. This fact holds

for both the sample tangent and the sample constrained portfolios. The consequence
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is that the differential loss using any estimator also tends to O as t increases. It
applies whether the estimation error comes from using fi or £ or both. On Figure
4.1 we clearly see that the relative performance losses of both portfolios converge

and tend to 0 as the amount of information increases.

Figure 4.1. A%(T, Q): differential loss (%) between the relative performance loss
of a tangency portfolio and that of a constrained portfolio due to estimation error

in the parameters with a given set of assets (DS3), n=10.
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In Figure 4.1, we can note that the differential loss is always positive, even with as
much information as t=480. This signifies that the relative performance loss of the
constrained portfolio is better than the one of the tangency portfolio, despite the
fact that the latter has a Sharpe ratio more than twice as high as the one of the
former. This suggests that the constrained portfolio is very good at mitigating the
impact of estimation error, or at least better than the tangent portfolio in this respect.
We note that this occurs when little information is available and that the amount of

assets is limited below a certain threshold.

As shown in the following tables, the fact that 4%(T, Q) is positive —meaning that
%Lo(Wq, W) is lower than %L, (wr, W) can be significant enough to allow the

constrained portfolios to reach a higher expected utility than the tangent ones. This

is notably the case when t < 120 and when n < 24.
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Table 4.5. E[U(wy)]: expected utility of the tangent portfolios using both

estimators fi and £, depending on the number of assets n and the amount of

information available t.

E[U(w)]

DS |[DS1|DS2|DS3| DS4 | DS5 | DS6 | DS7 | DS8 | DS9 | DS10 | DS11 | DS12 | DS13 | DS14
t n=6|n=6n=10{n=24|n=25|n=25n=25|n=25|\n=30| n=32 | n=32 | n=32 | n=40 | n=70

60 -1.54{-1.50(-5.00(-40.92|-46.47|-48.61|-55.37|-46.27|-88.94|-149.41(-137.77|-161.51|-470.47 -

120 0.13]10.18(-1.35] -581 | -6.52| -6.12 | -4.85] -6.56 |-10.27| -11.58 | -11.71 | -11.44 | -20.97 |-177.97

240 0.7410.79(-0.21]| -047 | -0.80 | -0.05| 2.31 | -0.87 | -2.29( 0.30 -0.83 148 | -3.97 | -14.26

360 092(097]1009]| 064 | 036 | 1.18 | 3.75 | 0.29 | -0.81 [ 2.38 1.08 372 | -1.47 | -5.02

480 1.00(1.06|024( 1.11 | 0.85 | 1.70 | 435 | 0.77 | -0.21 | 3.20 1.84 461 -0.53 | -2.23

Source: authors' elaboration

The expected utility of the tangent portfolios in Table 4.5 is the benchmark against

which the performances of the constrained portfolio are compared. The cells
highlighted in grey show the cases in which the expected utility of the tangency

portfolio is higher than that of the constrained portfolios.

Table 4.6. E[U(WQ)]: expected utility of the constrained portfolios using both

estimators fi and £, depending on the number of assets n and the amount of

information available t.

E[U(Wg)|

DS |DS1|DS2(DS3| DS4 | DS5 | DS6 | DS7 | DS8 | DS9 | DS10 | DS11 | DS12 | DS13 | DS14
t n=6|n=6|n=10\n=24|n=25|n=25|n=25|n=25|n=30| n=32 | n=32 | n=32 | n=40 | n=70
60 [-0.94]-0.87|-4.03|-34.19(-39.05(-40.78(-43.80(-38.11|-72.96|-118.20|-112.31(-129.03(-365.36 -
120 [0.33(0.40]-1.09| -5.05(-5.74|-531|-4.07 | -5.83|-9.16| -993 [ -10.29| -9.75 | -18.62 |-160.85
240 0.8210.88(-0.12] -0.321-0.63 ] 0.10 | 1.95 [ -0.89| -2.13| 0.23 -0.71 1.41 -3.72 | -13.45
360 097(1.03(0.14] 069 | 043 | 1.22 | 3.20 | 0.14 | -0.80| 2.05 1.02 3.40 -1.46 | -4.74
480 | 1.04(1.09(027( 1.12 [ 088 | 1.70 | 3.72 | 0.58 | -0.25| 2.78 1.71 419 | -059 | -2.09

Source: authors' elaboration

As explained earlier, and now by comparing Table 4.5 and Table 4.6, we observe

that the estimation error mitigation profile of the constrained portfolio appears to

result in a greater expected utility than that of the tangent one when t < 120 and/or

when n < 24. The cells highlighted in grey show the cases in which the expected

utility of the tangency portfolio is higher than that of the constrained portfolios.
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4.2. Constrained vs tangent portfolios: adding constraints
Adding constraints to a given portfolio reduces its maximum utility, so that in
theory if we knew all the parameters it would be counterproductive to do so. But, if we
are in the presence of estimation error, as is the case in real life, the impact of estimation

error could be reduced by adding constraints to the portfolio.

As explained in Section 2.3.1, a portfolio can be constrained by using a matrix A
that contains the coefficients of the constraints and with an m-vector b. As a reminder,
m is the number of constraints to which we subject the portfolios.

The following example illustrates how we conducted the present experiment. In
matric A, we want the sum of each row to be % and the sum of each column to be 1.
Additionally, for simplicity, the coefficients of the constraints are either unit entries or
zeros and the portfolios can only be subject to m constraints if% is an integer. Also, as

shown in the following example, the unit entries have been arbitrarily added one after

another and each vector b row’s value is 1/m, so that the total sum of b’s rows is 1.2

In this example, we have m=3 and n=6 which gives us

1 10 00 0 1/3
A=|0 01 1 0 O|andb=|1/3].
0 00 01 1 1/3

Whenever possible, we subjected the 14 portfolios introduced in section 4.1 to this
constraining method, with m=1 (as used in 4.1), m=2, m=3, m=4, m=5, m=6 and m=8

constraints.

The results appear in the following tables, they show the relative performance loss
of the tangent and the different constrained portfolios depending on their number of
constraints and assets. Each table corresponds to a given level of information, Table 4.7
shows the results for t=120 and Table 4.8 for t=480. In Table 4.7 and Table 4.8, the
relative performance loss of the tangent portfolio (3" column) is our reference point.
Cells highlighted in grey show cases in which the relative performance loss of the

constrained portfolios is higher than the one of the tangent portfolios.

2 The method used to add constraints to the portfolios is arbitrary and used for simplicity. There are other ways to constrain the
portfolios.
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Table 4.7. %L, (wp, Wp): relative performance loss (%) of tangent and

constrained portfolios depending on their number of constraints and assets for a

given level of information t=120.

%Lp(wp* wp)

DS# n T m=1 m=2 | m=3 | m=4 m=5 | m=6| m=8
DS1 [ n=6] 89.63 | 73.05 | 57.19 | 5891 - - - -
DS2 | n=6]| 86.25 | 69.32 | 60.06 | 40.20 - - - -
DS3 |n=10] 315.03 | 277.67 | 241.34 - - 144.03 - -
DS4 |[n=24| 360.14 | 332.49 | 308.81 |300.64| 274.56 - 246.57| 210.89
DS5 [n=25]| 422.82 | 390.44 - - - 298.17 - -
DS6 |n=25| 308.98 | 286.89 - - - 306.71 - -
DS7 [n=25]| 183.86 | 181.70 - - - 134.37 - -
DS8 |[n=25]| 438.43 | 455.21 - - - 370.87 - -
DS9 [n=30| 983.28 | 997.74 | 950.36 | 883.69 - 773.53 |756.19 -
DS10|n=32| 329.41 | 323.47 | 305.75 - 275.25 - - 241.39
DS11|n=32| 429.86 | 413.00 | 387.26 - 374.62 - - 471.28
DS12|n=32| 273.31 | 262.69 | 249.76 - 224 .84 - - 173.47
DS13|n=40]1520.48[1573.10|1477.58| - 1305.57[1236.60( - 1023.66
DS14|{n=70]{7637.10{6946.28|6494.36| - - 524413 - -

Source: authors' elaboration

Table 4.7 shows that the constrained portfolios are almost always better at
mitigating the performance loss due to estimation error than the tangent ones.

Furthermore, for t = 120, there is always at least one constrained portfolio with m

constraints so that %L (wq, Wg) < %L (Wr, Wr).
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Table 4.8. %L, (wp, Wp): relative performance loss (%) of tangent and

constrained portfolios depending on their number of constraints and assets for a

given level of information t=480.
YoLp(Wp, Wp)

DS# n T m=1 | m=2|m=3 | m=4| m=5| m=6 | m=8
DSI | n=6]19.16 | 16.00 | 12.78 | 13.44 - - - -
DS2 | n=6| 18.44 | 15.18 | 13.45| 9.17 - - - -
DS3 |n=10| 62.06 | 56.17 | 49.85 - - 31.64 - -
DS4 |n=24| 50.50 | 48.27 | 45.99 | 45.90 | 42.98 - 40.60 | 36.38
DS5 |n=25| 57.86 | 55.30 - - - 46.79 - -
DS6 |n=25| 42.04 | 40.34 - - - 47.93 - -
DS7 |n=25| 24.65 | 25.26 - - - 20.71 - -
DS8 |n=25| 60.03 | 64.53 - - - 58.22 - -
DS9 |n=30(118.411124.95|122.27(116.79 - 107.70] 108.05 -
DS10{n=32| 36.57 | 37.36 | 36.35 - 34.60 - - 33.86
DS11|{n=32| 48.12 | 47.99 | 46.31 - 4741 - - 66.74
DSI12|n=32| 30.11 | 30.05 | 29.43 - 28.03 - - 24.09
DS13|n=40(135.77146.89| 142.33 - 133.691130.44 - 117.85
DS14|n=70]194.59]|188.82|186.28 - - 175.57 - -

Source: authors' elaboration

According to our observations, there is always at least one portfolio with m
constraints that allows us to have %Lq(wo, W) < %Ly (wr, Wr), even for values of t

as big as t = 480.

We noticed that up to a certain point, the greater m is, the more the estimation error
tends to be reduced; however, adding too many constraints can also exacerbate the
relative performance loss of the portfolios. For example, we can clearly see it in the last
column of Table 4.7 and Table 4.8 with DS11. In Table 4.8, adding m=8 constraints to
the 11" Data Set has the effect to increase the relative performance loss to 66.74%,
while the value is at 46.31% when only m=2 constraints are added.

Overall, since most cells are not highlighted, results seem to show that —up to a
certain point—adding constraints is a very effective way to reduce estimation error. This
is in line with our hypothesis that the addition of constraints can have a positive impact
on estimation error reduction. This observation does not mean that the expected utility
of the constrained portfolios will necessarily be higher than the one of the tangent

portfolios, as constraining the portfolio also reduces their maximum utility. But within
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the 14 data sets, we noticed that for t < 240, there is always a three-fund portfolio rule
with m constraints that outperforms the classic tangent portfolio; not only in terms of
estimation error but also regarding its expected utility. This means that for t < 240, it

seems to be worth it to sacrifice some maximum utility by adding constraints.

In Table 4.9, Table 4.10 and Table 4.11, the expected utility of the tangent portfolio
(3" column) is our reference point. Cells highlighted in grey show cases in which the
expected utility of the constrained portfolios is lower than the one of the tangent
portfolios. Results are shown for the levels or information t=60, t=120 and t=240. As a
reminder, we are still using the constraining method explained in Section 4.2.

Table 4.9. E[U(w,)]: expected utility of tangency and constrained portfolios

depending on their number of constraints and assets for a given level of

information t=60.

DS# n EULT [EUtm=1|EUtm=2|EUtm=3|EUtm=4|E.Ut.m=5|E.Ut.m=8
DS1 | n=6 | -154 -0.94 -0.42 -0.29 - - -
DS2 | n=6 | -1.50 -0.87 -0.45 0.11 - - -
DS3 | »n=10{| -5.00 -4.03 -3.28 - - -1.44 -
DS4 | n=24| -40.92 | -34.19 -29.77 -25.93 -22 .58 - -12.39
DS5 [n=25] -46.47| -39.05 - - - -22.09 -
DS6 | n=25| -48.61 | -40.78 - - - -22.69 -
DS7 | n=25| -5537| -43.80 - - - -23.66 -
DS8 | n=25| -46.27| -38.11 - - - -21.76 -
DS9 [n=30]| -88.94| -72.96 -63.39 -55.24 - -42.05 -
DS10| 7=32|-149.41( -118.20 | -101.19 - -74 95 - -41.07
DSI11|n=32|-137.77| -112.31 -96.52 - -71.32 - -39.03
DS12| n=32]-161.51| -129.03 | -109.60 - -80.67 - -44 38
DS13| n=40(-47047| -365.36 -29.27 - -20.35 -17.09 -114.13

Source: authors' elaboration

In Table 4.9 the expected utility of the constrained portfolios is always higher

that of the tangency portfolios when t=60, no matter the amount of constraints.
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Table 4.10. E[U(w,,)]: expected utility of tangent and constrained portfolios

depending on their number of constraints and assets for a given level of

information t=120.

DS# n EULT|EUtm=1|EUtm=2|EUtm=3|EUtm=4|EUtm=5|E.Ut.m=8
DS1 n=6| 0.13 0.33 0.53 0.35 - - -
DS2 n=6 | 0.18 0.40 0.45 0.76 - - -
DS3 n=10| -135 -1.09 -0.86 - - -0.26 -
DS4 n=24| -581 -5.05 -4.53 -4.13 -3.64 - -2.10
DS5 n=25( -6.52 -5.74 - - - -3.71 -
DSe6 n=25( -6.12 -5.31 - - - -3.84 -
DS7 n=25( -4.85 -4.07 - - - -1.67 -
DS8 n=25| -6.56 -5.83 - - - -3.95 -
DS9 n=30] -10.27 -9.16 -8.50 -7.86 - -6.69 -
DS10 n=32|-11.58 -9.93 -8.98 - -7.33 - -4.87
DS11 n=32|-11.71| -10.29 -0.38 - -7.94 - -6.02
DS12 n=32]| -11.44 -9.75 -8.71 - -6.93 - -3.90
DS13 n=40] -2097 | -18.62 -17.40 - -15.14 -14.12 -11.39
DS14 n=701-177.97| -160.85 | -148.58 - - -118.28 -

Source: authors' elaboration

Again, in Table 4.10, we observe that the expected utility of the constrained
portfolios is always higher that of the tangent portfolios when t=120, no matter the

amount of constraints.

Table 4.11. E[U(w,,)]: expected utility of tangent and constrained portfolios

depending on their number of constraints and assets for a given level of

information t=240.

DS# n EULT |EUtm=1|EUtm=2|EUtm=3|EUtm=4|EUtm=5|E.Ut.m=8
DS1 | n=6 | 0.74 0.82 0.91 0.62 - - -
DS2 | n=6 | 0.79 0.88 0.81 1.04 - - -
DS3 | n=10] -0.21 -0.12 -0.04 - - 0.20 -
DS4 | n=24| -047 -0.32 -0.18 -0.15 0.01 - 0.34
DS5 | n=25] -0.80 -0.63 - - - -0.16 -
DS6 |n=25| -0.05 0.10 - - - -0.21 -
DS7 | n=25( 2.31 1.95 - - - 2.51 -
DS8 |n=25| -087 -0.89 - - - -0.51 -
DS9 | #n=30| -2.29 -2.13 -2.00 -1.85 - -1.57 -
DS10{ »=32| 0.30 0.23 0.37 - 0.60 - 0.65
DS11|»=32| -0.83 -0.71 -0.53 - -0.50 - -0.96
DS12|n=32| 148 1.41 1.49 - 1.69 - 2.23
DS13|n=40| -3.97 -3.72 -3.52 - -3.14 -2.96 -2.45
DS14|n=70( -1426 | -13.45 -12.93 - - -11.49 -

Source: authors' elaboration
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We can see in Table 4.11 that within our data sets and for t=240, there is always at
least a constrained portfolio with a given m amount of constraints that dominates the

tangent portfolio in terms of expected utility.

Below, with Table 4.12, Table 4.13 and Table 4.14, we highlight the fact that
despite leading to a lower maximum utility, adding constraints to a portfolio can allow
it to achieve a higher expected utility than a tangent portfolio. As a reminder, U(wp)
represents the maximum potential —theoretical— utility that can be reached for a given

portfolio p.

Table 4.12. E[U(w,)]: evolution of the expected and maximum utility of a

portfolio with a given set of assets (DS4) as a function of the number of

constraints it is subjected to, and dependent on the amount of information t.

DS4
n=24
t T m=1|m=2|m=3|m=4| m=6| m=8
60 |-40.92|-34.19]-29.77|-25.93|-22.58]-16.72]-12.39
120 | -5.81|-505]-453]-4.13|-3.64|-2.84]-2.10
240 047 |-0321-018(-0.151 0.01 | 0.14 | 0.34
360 0641 069 | 077073 (083 084 ] 094
480 .11 | 112 ) 117 | 1.11 | 1.19 | 1.15 ] 1.20

U(wp) 223 121712171206 (209 194 ] 1.89
Source: authors' elaboration

Table 4.12 clearly shows that adding constraints can indeed increase the expected
utility of the portfolio, despite a reduction in the maximum utility as observed in the last
row. We also notice that in the specific case shown by the table, the constrained
portfolios always yield a higher expected utility than the tangent portfolio, even with as
much information as t=480. It is interesting to note that in this specific case, the most
constrained portfolio (with m=8) is also the one that leads to the highest expected utility,
while simultaneously having the lowest maximum utility. This means that the
constrained portfolio does so well at mitigating the relative performance loss (as
suggested by Table 4.7 and Table 4.8) that it does more than compensate for its lower

maximum utility.
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Table 4.13. E[U(w,,)]: evolution of the expected and maximum utility of a

portfolio with a given set of assets (DS3) as a function of the number of
constraints it is subjected to, and dependent on the amount of information t.

DS3

n=10
t T m=1l|m=2|m=5
60 -5.00| -4.03 ] -3.28 | -1.44
120 | -1.35(-1.09] -0.86 | -0.26
240 [ -0.211]-0.12-0.04] 0.20
360 009 0141 020 | 0.34
480 024 (0271 031 | 040

U(w,) | 0.63 | 0.61 | 0.61 | 0.59
Source: authors' elaboration

Table 4.13 shows results similar to those presented in Table 4.12. It is interesting
to note the variability of the expected utility depending on the amount of constraints.
For example, in Table 4.13, for t=360, the expected utility of the constrained portfolio
with m=1 is 0.14 while the expected utility of the constrained portfolio with m=5 is
0.34. The only difference between these two constrained portfolios is their amount of

constraints, they are entirely responsible for these variations in the expected utility.

Table 4.14. E[U(w,)]: evolution of the expected and maximum utility of a

portfolio with a given set of assets (DS13) as a function of the number of

constraints it is subjected to, and dependent on the amount of information t.

DS13

n=40

t T m=1 | m=2|m=4| m=5| m=8
60 |[-470.47(-365.36]-29.27|-20.35|-17.09|-114.13
120 | -2097 | -18.62 [-17.40|-15.14|-14.12| -11.39
240 397 | -3.72 | -3.52 | -3.14 | -296| -2.45
360 -147 | -146 | -1.36]-1.19] -1.11 | -0.86
480 -0.53 | -0.59 | -053]-042]-038| -0.22

Uwy)| 148 | 126 | 126 126 | 124 123
Source: authors' elaboration

Table 4.14 shows that the results obtained earlier hold even when n is high. Here again,
despite leading to a lower maximum utility, the constrained portfolios can outperform

the expected utility of the tangent ones. It is important to note that adding more
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constraints does not necessarily imply a higher utility; for example, as highlighted in
grey in Table 4.14, with t=60 the expected utility of the portfolio with m=8 constraints

is much lower than the expected utility of the portfolio with m=2 constraints.

In the appendix, we explained what determines whether a tangent portfolio will
have a higher or lower expected utility than that of a constrained portfolio. To
summarize, our findings indicate that tangent portfolios rely on their higher maximum
performance, which are driven by their higher Sharpe ratio, while the constrained

portfolios are based on their better estimation error mitigation profile.

In the next section we tried to determine if the expected utility of the constrained
portfolios can be improved by randomizing their constraints.

4.3 Going further: randomizing constrained portfolio vs other portfolio rules

As explained previously, the unit entries used in matrix A have been arbitrarily
added one after another for simplicity. In this section, we randomized the unit entries in
matrix A to see if the results could be further improved. The other characteristics of the

method used in Section 4.2 to define matrix A and vector b remain unchanged.

Using MATLAB, the unit entries have randomly been rearranged many times. Each
time, for a given amount of constraints, we registered the corresponding performances
of the randomized constrained portfolios: their %L,(w,, w,) and their maximum
potential utility, which are affected by A. With these performances, we have calculated
and reported the expected utility of the portfolios. We repeated the procedure with 4
data sets: DS1 and DS2 (n=6), DS3 (n=10) and DS4 (n=24). Whenever it was possible,
we constrained them with m=2, m=3 and m=4 constraints. We could not do the
experiment with more than 24 assets because of limiting computing capacity in creating
combinations for matrix A. The results obtained, however, are significant enough to

draw some conclusions.

The following table reports the sample maximum, minimum and average expected
utility obtained by randomizing matrix A for two different levels of information: with
t=60 and t=120. The expected utility of the corresponding tangent portfolios for the data

sets have been added as a benchmark.
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Table 4.15. E[U(W,,)]: sample maximum, minimum and average expected utility

obtained by randomizing the matrix containing the coefficients of the constraints,

for two different levels of information.

DS1 DS2 DS3 DS4

n=06 n=6 n=10 n=24
m=22m=3\m=2\m=3\m=2| m=3 | m=4
Max E. .Ut |-0.42|-0.02(-0.34| 0.11 |-3.27[-25.19]|-21.82
t=60 | Min E.Ut. [-0.83]-0.29]-0.50(-0.91(-3.38|-26.03|-22.66
Avg E.Ut. |-0.56]-0.26[-0.40(-0.08|-3.30|-25.85|-22.42
Max E.Ut. | 0.53[0.64|059]|0.76|-0.86( -3.20| -3.52
t=120| Min.E.Ut. | 0.09]-0.14]| 0.43(0.12|-0.97] -5.54 | -3.87
Avg E.Ut. 10.38]10.40(0.53]0.58]-0.88] -4.07 | -3.62
Tangent portfolio as a benchmark
o e E e
= . . -1.35 -5.81
Source: authors' elaboration

In Table 4.15, we can observe that the difference between the sample maximum
and minimum expected utility can be significant. It is also showed that the sample
average utility of the randomized constraints is higher than the expected utility of the

equivalent tangent portfolios.

Here, it is important to keep in mind that the difference found in the expected utility
is entirely due to the order in which the coefficients of the constraints have been
randomly rearranged in matrix A. This shows that the expected utility of the constrained
portfolios can indeed be improved by randomizing the constrained assets. We can see
by comparing the maximum and the minimum utility within each portfolio for a given
m number of constraints that the order in which the assets are constrained does matter
and has a significant impact on the performance of the portfolios. It can be concluded
that for each constrained portfolio, there is an optimal amount of constraints and an
optimal way to combine them. Such an optimal constraining method would maximize
the expected utility of the portfolio and goes even further than the results presented in
Section 4.2, in which the coefficients of the constraints in matrix A were simply added

one after another.

There are several limitations to the randomization of constraints, however. First,
since it is generated randomly, there is no way to ensure that the arrangement of the unit
entries (coefficients of the constraints) is optimal. Second, depending on the number of
assets and constraints the portfolios are subjected to, we may be limited by memory and
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computing power given the many possible combinations for any matrix A. This means
that the best we can do is to generate as many combinations as possible and use the one

that allows us to achieve the maximum expected utility.

4.4 Control experiment: equally weighted portfolios vs all the portfolio rules
In this section, we compared the expected utility of the constrained portfolios to
that of the equally weighted portfolio, which is constructed by assigning the same

weighting to each asset in the portfolio.

When t < 60 and/or when n is high (ranging from 32 to 40 assets, according to our
results), meaning that the risk for estimation error is high, an equally weighted portfolio
always outperforms all the portfolio rules. Then, all other things being equal, the higher
t, the less likely the equally weighted portfolio is to be better than the portfolio rules.
The equally weighted portfolio is the safest way for an investor to build a portfolio as it
does not rely on any estimation. It dramatically reduces its maximum utility, but on the
other hand, it will also invariably provide a higher utility than any portfolio rule when
little information is available. This method is a very conservative yet efficient way of
building a portfolio. In the following table, we show the different expected utilities
depending on whether we use of an equally weighted portfolio (3" column), a tangency

portfolio or constrained portfolios.

Table 4.16. E[U(w,,)]: expected utility for equally weighted portfolios and

different constrained portfolios with a given reduced level of information, t=60.

DS# | n |EUtEqw| EULT|E.Utm=1{E.Utm=2|E.Ut.m=3|E.Ut.m =4{E . Ut.m =5|E.Ut.m =8
DS1 | n=6 0.20 -1.54 -0.94 -0.42 -0.29 - - -
DS2 | n=6 0.20 -1.50 -0.87 -0.45 0.11 - - -
DS3 |#n=10{ 0.26 -5.00 -4.03 -3.28 - - -1.44 -
DS4 [n=24| 021 -40.92] -34.19 -29.77 -25.93 -22.58 - -12.39
DS5 [n=25| 017 -46.47| -39.05 - - - -22.09 -
DS6 [n=25| 040 -48.61| -40.78 - - - -22.69 -
DS7 [n=25 0.35 -55.37] -43.80 - - - -23.66 -
DS8 [n=25 0.31 -46.27| -38.11 - - - -21.76 -
DS9 [n=30( 023 -88.94 ] -72.96 -63.39 -55.24 - -42.05 -
DS10{n=32] 042 |[-14941] -118.20 | -101.19 - -74.95 - -41.07
DSI1|n=32| 040 [-137.77| -112.31 | -96.52 - -71.32 - -39.03
DS12(n=32] 041 [-161.51] -129.03 | -109.60 - -80.67 - -44.38
DS13[n=40] 023 |-470.47| -365.36 | -29.27 - -20.35 -17.09 | -114.13

Source: authors' elaboration
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Table 4.16 shows that the equally weighted portfolio method largely dominates
when little information is available. Except for the case in DS2 with m=3, the expected
utility using the tangency and constrained portfolios is always negative while the one

of the equally weighted portfolio is always positive.

Table 4.17. E[U(w,,)]: expected utility for equally weighted portfolios and

different constrained portfolios with a given level of information, t=120.
with 7=120

DS# | »n |EUtLEqw| EULT |E.Utm=1|E.Ut.m =2|E.Ut.m =3|E.Ut.m=4|E.Ut.m =5|E.Ut.m =8
DS1 | n=6 0.20 0.13 0.33 0.53 0.35 - - -
DS2 | n=6 0.20 0.18 0.40 0.45 0.76 - - -
DS3 [#=10] 0.26 -1.35 -1.09 -0.86 - - -0.26 -
DS4 [n=24| 021 -5.81 -5.05 -4.53 -4.13 -3.64 - -2.10
DS5 |n=25] 0.17 -6.52 -5.74 - - - -3.71 -
DS6 [7=25| 040 -6.12 -5.31 - - - -3.84 -
DS7 |n=25| 035 -4.85 -4.07 - - - -1.67 -
DS8 |n=25] 0.31 -0.56 -5.83 - - - -3.95 -
DS9 |»=30] 023 -1027 | -9.16 -8.50 -7.86 - -6.69 -
DS10|n=32] 042 -11.58| -993 -8.98 - -7.33 - -4.87
DS11|7=32] 040 -11.71 ] -10.29 -9.38 - -7.94 - -6.02
DS12|n=32| 041 -11.44 | -9.75 -8.71 - -6.93 - -3.90
DS13|n=40] 0.23 -2097 | -18.62 | -17.40 - -15.14 | -14.12 -11.39
DS14|n=70] 024 [-177.97| -160.85 | -148.58 - - -118.28 -

Source: authors' elaboration

The results showed in Table 4.17 are similar to those of Table 4.16. The difference is
that here, in Table 4.17, more information is available. This allows portfolios with fewer
assets (n=6) to eventually achieve greater expected utility than that of the equally
weighted portfolio. This is no longer the case when data sets are composed of a larger
amount of assets. The portfolios that have a higher expected utility than that of the

equally weighted portfolio are highlighted in grey.
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Table 4.18. E[U(w,,)]: expected utility for equally weighted portfolios and

different constrained portfolios with a given level of information, t=240.

with =240

DS# n |EUtEqw|E.ULT|EUtm=1|E.Utm=2|E.Ut.m=3|E.Ut.m=4|E.Ut.m=5|E.Ut.m=8
DS1 | n=6 0.20 0.74 0.82 091 0.62 - - -
DS2 | n=6 0.20 0.79 0.88 0.81 1.04 - - -
DS3 |n=10 0.26 -0.21 -0.12 -0.04 - - 0.20 -
DS4 |n=24] 021 0471 -0.32 -0.18 -0.15 0.01 - 0.34
DS5 |n=25] 0.17 -0.80| -0.63 - - - -0.16 -
DS6 [n=25] 040 -0.05 0.10 - - - -0.21 -
DS7 |n=25| 035 2.31 1.95 - - - 2.51 -
DS8 |[n=25| 0.31 -0.87 1 -0.89 - - - -0.51 -
DS9 |»n=30] 023 -2291 -2.13 -2.00 -1.85 - -1.57 -
DS10{n=32| 042 0.30 0.23 0.37 - 0.60 - 0.65
DS11|»=32] 040 -0.83 ] -0.71 -0.53 - -0.50 - -0.96
DS12({n=32] 041 1.48 1.41 1.49 - 1.69 - 2.23
DS13{n=40] 023 397 -3.72 -3.52 - -3.14 -2.96 -2.45
DS14|n=70( 024 |-1426| -13.45 -12.93 - - -11.49 -

Source: authors' elaboration

In Table 4.18, even more information is available. This makes the use of the
equally weighted portfolio less interesting. The portfolios that have a higher expected
utility than that of the equally weighted portfolio are highlighted in grey. When the
amount of assets is limited below the threshold around 32 < n < 40, the expected
utility of the tangent and specifically of the constrained portfolios can be much greater
than the one of the equally weighted ones. This means that the equally weighted
portfolio is more interesting when little information is available and/or when the

portfolios are composed of many assets (n > 32).

5. CONCLUSION

After analyzing the impact of estimation error, we saw different ways to mitigate it
and then compared them to each other. It has been shown that in certain conditions,
adding constraints to the portfolios is an effective way to reduce estimation error and
even to increase their expected utility, notably when the amount of assets in the
portfolios is limited to a certain quantity (n < 24) and when the amount of information
is moderate to high (for 60 < t < 480). To summarize, it can be worth it to sacrifice

some maximum utility and to add constraints in order to gain precision in the estimation.
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Based on our results, it seems that for an amount of assets around 25 <n < 36
and when sufficient information is available —around (t = 360)— it is preferable to use
the classic tangent portfolio method because this method aims for the highest utility. In
the case where 60 < t < 240, it seems to be better to use the constrained portfolio
method as it reduces estimation error without sacrificing too much maximum utility,
leading to a better expected utility. Then, when the estimation risk is too high, namely
when t < 60 or that the quantity of assets in the portfolio exceeds a certain threshold
(estimated around n > 36), the use of an equally weighted portfolio is encouraged as
opposed to other portfolio rules that would lead to an excessive estimation error. This

would ultimately result in a negative utility.

Table 5.1 summarizes which method to use based on what our observations

suggest.

Table 5.1. Most appropriate portfolio construction method based on our

observations and focusing on the expected utility.®

t n 6<n<10 10=sn<24 24 <n <36 n =36

t <60 Equally weighted| Equally weighted|Equally weighted| Equally weighted

60 <t =120 Constrained [Equally weighted|Equally weighted|Equally weighted

120 <t = 240]  Constrained Constrained Constrained |Equally weighted

t =360 Constrained Constrained Tangent Equally weighted

Source: author's elaboration

Finally, randomization of the matrix used to constrain portfolios seems to be an
interesting and promising approach because our results showed that it can lead to even

higher expected utility than using arbitrary constraints as conducted in our research.

3 This table only provides general guidelines; it is not an absolute reference.
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