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Executive Summary: 

 

The objective of this paper is to better understand the impact that estimation 

error in the parameters has on portfolio performance and to identify ways to reduce it. 

To do so, we worked within the frame of Modern Portfolio Theory. Then, several 

portfolio rules have been applied to 14 data sets. They were analyzed through 

calculation experiments using MATLAB software. The ability of the various portfolio 

rules to reduce the impact of estimation error depending on several variables were 

measured and understood. The study shows that adding constraints to the portfolios is 

an effective way to mitigate the impact of estimation error. This may allow constrained 

portfolios to achieve greater expected utility compared to the tangency portfolio, but 

equally weighted portfolios remain the best way to build a portfolio when little 

information is available or when the portfolio is composed of many assets.        

 

Resumen Ejecutivo: 

 

El objetivo de este trabajo es comprender mejor el impacto que el error de 

estimación en los parámetros tiene sobre el rendimiento de un portafolio e identificar 

formas de reducirlo. Para eso, trabajamos en el marco de la Teoría Moderna del 

Portafolio. A partir de esto, se han aplicado y analizado varias reglas de portafolio a 14 

conjuntos de datos. Luego, se analizaron mediante experimentos de cálculo utilizando 

el software de MATLAB. Se midió y entendió la capacidad de las diversas reglas de la 

cartera para reducir el impacto del error de estimación en función de varias variables. 

El estudio muestra que añadir restricciones a los portafolios es una forma eficaz de 

mitigar el impacto del error de estimación. Eso puede permitir que los portafolios 

restringidos logren una mayor utilidad esperada en comparación con el portafolio 

tangente, pero el portafolio de pesos iguales sigue siendo la mejor manera de crear un 

portafolio cuando se dispone de poca información o que el portafolio está compuesto 

por muchos activos.   
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1. INTRODUCTION 

 

Conceptualized in 1952 by Harry Markowitz, Modern Portfolio Theory (MPT) is 

based on the principle that an optimal portfolio is the combination of the riskless asset 

(F) and the tangency portfolio (T) composed solely of risky assets. Even though the 

proportions between assets (F) and (T) are up to the investor –depending on his risk 

profile–, the main idea is that in any case he can only invest in 2 types of assets: those 

composing the tangency portfolio and the riskless one. Such an optimal portfolio is 

called a two-fund portfolio rule.   

As stated by the MPT, the goal of the investor is to maximize his utility through a 

mean-variance (MV) analysis. His objective is to allocate his resources to build an 

optimal portfolio: one that has the highest expected return (mean) for a given level of 

risk, or equivalently, one that has the lowest risk (variance) for a given expected return.  

1.1 Portfolio Optimization Problem: Theory  

An investor is building a portfolio using a riskless asset (F) and n risky assets. The 

rates of return on these assets at time t are called 𝒓𝒇𝒕 and 𝒓𝒕, respectively. It is assumed 

that 𝑡 > 𝑛 and excess returns are defined as 𝑹𝒕 = 𝒓𝒕 −  𝒓𝒇𝒕 𝟏, where 𝟏 is a n-vector of 

unit entries. Concerning its probability distribution, we assume that 𝑹𝒕 is independent 

and identically distributed (i.i.d) over time. In addition, it is assumed that 𝑹𝒕 follows a 

multivariate normal distribution with mean 𝝁 and covariance matrix 𝜮.   

Given the portfolio weights 𝒘𝑝, an n-vector on the risky assets, the excess return 

on the portfolio at time t is 𝑅𝑝𝑡 = 𝒘𝑝′𝑹𝒕, whose mean and variance are given by  µ𝑝 =

𝒘𝑝′𝝁 and 𝜎𝑝
2 = 𝒘𝑝′𝜮𝒘𝑝. The parameters 𝝁 and 𝜮 will be referred as the “true 

parameters”. The mean-variance utility of a portfolio 𝑝 is given by 

𝑈(𝒘𝑝) = 𝜇𝑝 −
γ

2
 𝜎𝑝

2, (1) 

where γ represents the coefficient of risk aversion (risk profile) of the investor, which 

satisfies 0 < γ < ∞. The goal of the investor is to solve the following portfolio 

optimization problem (MV): 

Maximize 𝑈(𝒘𝑝) = 𝒘𝑝
′𝝁 −

γ

2
𝒘𝑝

′𝜮𝒘𝑝. (2) 
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When there is no parameter uncertainty (i.e. no estimation error) the investor knows 𝝁 

and 𝜮; in this situation he will build an optimal tangent portfolio (T) so that 

𝒘𝑇 =
1

γ
𝜮−1𝝁. (3) 

The resulting expected utility of this solution is  

𝑈(𝒘𝑇) =
1

2γ
𝝁′𝜮−1𝝁 =

𝜃𝑇
2

2γ
, (4) 

where 𝜃𝑇
2 = 𝝁′𝜮−1𝝁 is the squared Sharpe ratio of the tangency portfolio (T). For a 

given risk aversion parameter γ, 𝑈(𝒘𝑇) is the highest –theoretical– utility that an 

investor’s portfolio can reach. 

1.2 Portfolio Optimization Problem: Reality, ML estimation method   

In real life, the investor neither knows 𝝁 nor 𝜮, so if he were to build a portfolio for 

the period t+1, he would first have to estimate these parameters. Using historical data, 

the investor can use the maximum likelihood (ML) estimation method. We note that 

better estimators exist, such as the unbiased ones, but that is not the theme of this paper. 

Let 𝛷𝑡 be t monthly periods of observed returns data so that 𝛷𝑡 = {𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕}. 

Based on this, the investor can now calculate the sample mean and covariance matrix 𝝁̂ 

and 𝜮 ̂ respectively defined as 

𝝁̂ =
1

t
 ∑ 𝑹𝒊

𝑡

𝑖=1

, (5) 

and 

𝜮 ̂ =
1

𝑡
∑(𝑹𝒊 − 𝝁̂)(𝑹𝒊 − 𝝁̂)′

𝑡

𝑖=1

. (6) 

Statistically, these are the maximum likelihood estimators of the parameters 𝝁 and 𝜮. 

This means that by plugging-in these estimators into the original portfolio weights 

formula, the investor can now calculate 𝒘̂𝑇, the maximum likelihood estimator of the 

unknown portfolio weight vector 𝒘𝑇. We replace 𝝁 and 𝜮 in (3) by 𝝁̂ and 𝜮 ̂ so that 

𝒘̂𝑇 =
1

γ
𝜮 ̂−1𝝁̂. (7) 

The out-of-sample performance of such a plug-in portfolio 𝒘̂ is given by  
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𝑈(𝒘̂𝑇) = 𝒘̂𝑇
′𝝁 −

γ

2
 𝒘̂𝑇

′𝜮𝒘̂𝑇 (8) 

1.3 Introducing the concept of estimation error  

Using the vector 𝒘𝑇 in (3) allows the creation of an optimal portfolio, leading to 

the highest possible utility 𝑈(𝒘𝑇). But as explained earlier, the parameters used to 

calculate 𝒘𝑇 are unknown and must be estimated, leaving us with 𝒘̂𝑇 in (7), a plug-in 

estimator of 𝒘𝑇. 

For any portfolio 𝑝, using an estimator 𝒘̂𝑝 instead of 𝒘𝑝 always comes with 

unavoidable estimation error, which has a negative impact on the performance of the 

portfolio. Estimation error arises from the uncertainty in the parameters 𝝁 and 𝜮; it is 

the difference between the optimal portfolio weights vector 𝒘𝑝 and its estimator 𝒘̂𝑝. It 

causes the investor to not optimally invest his resources into the different risky assets. 

If we knew the true parameters 𝝁 and 𝜮, there would not be any estimation error. 

Estimation error has a negative impact on the performance of the portfolio since 

𝑈(𝒘𝑝) − 𝑈(𝒘̂𝑝) > 0. (9) 

The loss function caused by using 𝒘̂𝒑 instead of 𝒘𝒑 is defined as 

𝐿(𝒘𝑝, 𝒘̂𝑝) = 𝑈(𝒘𝑝) − 𝑈(𝒘̂𝑝). (10) 

From there, we have the expected loss function that is given by 

𝜌(𝒘𝑝, 𝒘̂𝑝) = 𝐸[𝐿(𝒘𝑝, 𝒘̂𝑝)] = 𝑈(𝒘𝑝) − 𝐸[𝑈(𝒘̂𝑝)]. (11) 

 

2. PORTFOLIO RULES AND IMPACT OF ESTIMATION ERROR ON THEM   

 

2.1 The issue of estimation error under the classic two-fund portfolio rule 

Kan and Zhou (2007) have studied the loss function associated with the use of 

estimators rather than the use of the true parameters. They have showed that, for t 

observations and n assets: 

a) When the covariance matrix is known,  

𝔼[𝑈(𝒘̂𝑇)|𝜮] =
𝜃𝑇

2

2γ
−

𝑛

2γ𝑡
, (12) 
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leading to the performance loss 

𝜌(𝒘𝑇 , 𝒘̂𝑇|𝜮) = 𝑈(𝒘𝑇) − 𝔼[𝑈(𝒘̂𝑇)|𝜮] =
𝑛

2γ𝑡
. (13) 

b) When the mean is known,  

𝔼[𝑈(𝒘̂𝑇)|𝝁] = 𝑘0

𝜃𝑇
2

2γ
(14) 

and 

𝜌(𝒘𝑇 , 𝒘̂𝑇|𝝁) = (1 − 𝑘0)
𝜃𝑇

2

2γ
(15) 

where  

𝑘0 = (
𝑡

𝑡 − 𝑛 − 2
) [2 −

𝑡(𝑡 − 2)

(𝑡 − 𝑛 − 1)(𝑡 − 𝑛 − 4)
] . (16) 

c) When both the covariance matrix 𝜮 and the mean 𝝁 are to be estimated using 

the ML estimation method, 

𝔼[𝑈(𝒘̂𝑇)] = 𝑘0

𝜃𝑇
2

2γ
−

𝑛𝑡(𝑡 − 2)

2γ(t − n − 1)(t − n − 2)(t − n − 4)
(17) 

and 

𝜌(𝒘𝑇 , 𝒘̂𝑇) = (1 − 𝑘0)
𝜃𝑇

2

2γ
+

𝑛𝑡(𝑡 − 2)

2𝑦(𝑡 − 𝑛 − 1)(𝑡 − 𝑛 − 2)(𝑡 − 𝑛 − 4)
. (18) 

 

2.2 The orthogonal three-fund portfolio rule and its estimation error 

2.2.1 Introducing the orthogonal three-fund portfolio rule  

As proposed by Kan and Zhou (2007), in the presence of estimation error, a solution 

to mitigate the performance loss is to allocate a portion of the investment resources into 

the minimum-variance portfolio (G), added to the tangency portfolio (T) and the risk-

free asset (F). Such a portfolio is called a three-fund rule portfolio.  

In addition to that, Chávez-Bedoya and Rosales (2019) showed that the 

performance loss mitigation resulting in the use of a three-fund portfolio is due to the 

degree of orthogonality of its components. They introduced a three-fund portfolio that 

mixes F, H and G, where H is a maximum performance zero-investment portfolio that 

is orthogonal to G. This means that its objective is to maximize utility, that the value of 
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the sum of its assets is equal to zero and that there is no covariance between portfolio 

H and portfolio G. The minimum-variance portfolio G is defined by 

𝒘𝐺 =
𝜮−1𝟏

𝟏′𝜮−1𝟏
 , (19) 

leading to the performance 

𝑈(𝒘𝐺) = µ𝐺 −
γ

2
𝜎𝐺

2. (20) 

The zero-investment portfolio H is defined by 

𝒘𝐻 =
1

γ
𝑹𝝁 (21) 

where 

𝑹 = 𝜮−1 −
𝜮−1𝟏𝟏′𝜮−1

𝟏′𝜮−1𝟏
 . (22) 

The zero-investment portfolio (H) is also called “Hedge portfolio.” Its performance 

measures are given by 

𝑈(𝒘𝐻) =
ψ2

2γ
;     ψ2 = 𝝁′𝑹𝝁 (23) 

where ψ2 is the squared Sharpe ratio of portfolio H.  

Now that the portfolios G and H have been introduced, we can present the portfolio 

Q, which is the sum of the latter two. As G and H are orthogonal, we have 

𝒘𝐺
′ 𝜮𝒘𝐻 = 0, (24) 

meaning that the returns of G and H are uncorrelated so that  

𝒘𝑄 = 𝒘𝐺 + 𝒘𝐻;      𝑈(𝒘𝑄) = 𝑈(𝒘𝐺) + 𝑈(𝒘𝐻). (25) 

Using the ML estimators of 𝝁 and 𝜮, the plug-in estimators of portfolios G and H are  

𝒘̂𝐺 =
𝜮 ̂−1𝟏

𝟏′𝜮 ̂−1𝟏
;     𝒘̂𝐻 =

1

𝛾
𝑹̂𝝁̂,    (26) 

where 

𝑹̂ =
𝜮 ̂−1𝟏𝟏′𝜮 ̂−1

𝟏′𝜮 ̂−1𝟏
. 

Similarly, portfolio rule 𝒘̂𝑄 equals to the sum of the plug-in estimators of portfolios G 

and H so that 

𝒘̂𝑄 = 𝒘̂𝐺 + 𝒘̂𝐻;      𝑈(𝒘̂𝑄) = 𝑈(𝒘̂𝐺) + 𝑈(𝒘̂𝐻). (27) 
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2.2.2. The issue of estimation error under the orthogonal three-fund portfolio 

Now that the orthogonal three-fund portfolio has been introduced, we can focus on 

its expected out-of-sample performance and expected loss, given by: 

a) When 𝜮 is known: 

𝔼[𝑈(𝒘̂𝑄)|𝜮] = µ𝐺 −
γ

2
σ𝐺

2 +
ψ2

2γ
−

𝑛 − 1

2γt
, (28) 

𝜌(𝒘𝑄 , 𝒘̂𝑄|𝜮) =
𝑛 − 1

2γ𝑡
. (29) 

b) When 𝝁 is known: 

𝔼[𝑈(𝑤̂𝑄)|𝝁] = µ𝐺 −
γ

2
(

𝑡 − 2

𝑡 − 𝑛 − 1
) σ𝐺

2 + 𝑘1

ψ2

2γ
, (30) 

𝜌(𝑤𝑄 , 𝑤̂𝑄|𝝁) =
γ

2
(

𝑛 − 1

𝑡 − 𝑛 − 1
) σ𝐺

2 + (1 − 𝑘1)
ψ2

2γ
, (31) 

where  

𝑘1 = (
𝑡

𝑡 − 𝑛 − 1
) [2 −

𝑡(𝑡 − 2)

(𝑡 − 𝑛)(𝑡 − 𝑛 − 3)
] . (32) 

c) When both 𝝁 and 𝜮 are unknown and estimated using the ML estimation 

method: 

𝔼[𝑈(𝒘̂𝑄)] = µ𝐺 −  
γ

2
(

𝑡 − 2

𝑡 − 𝑛 − 1
) σ𝐺

2 + 𝑘1

ψ2

2γ
− 𝑘2

1

2γ
, (33) 

𝜌(𝒘𝑄 , 𝒘̂𝑄) =
γ

2
(

𝑛 − 1

𝑡 − 𝑛 − 1
) σ𝐺

2 + (1 − 𝑘1)
ψ2

2γ
+ 𝑘2

1

2γ
, (34) 

where 

𝑘2 =
(𝑛 − 1)𝑡(𝑡 − 2)

(𝑡 − 𝑛)(𝑡 − 𝑛 − 1)(𝑡 − 𝑛 − 3)
. (35) 
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2.3 The constrained three-fund portfolio rule and its estimation error 

2.3.1 Introducing the idea of constraints  

Let A be an m x n full row rank matrix with 𝑚 <  𝑛 and 𝒃 ≠ 𝟎 be an m-vector so 

that the augmented matrix [A b] has rank m and assumes 𝑨𝜮−1𝝁 ≠ 𝟎. For the optimal 

MV portfolio to satisfy a set of m linear constraints given by 𝑨𝒘 = 𝒃, we need to solve 

the following optimization problem (MV2): 

𝒘𝑄 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒘{𝑈(𝒘)│𝑨𝒘 = 𝒃} 

                        = 𝑎𝑟𝑔𝑚𝑎𝑥𝒘 {𝒘′𝝁 −
𝛾
2 𝒘′𝜮𝒘|𝑨𝒘 = 𝒃} 

        = 𝜮−1𝑨′(𝑨𝜮−1𝑨′)−1𝒃 +
1

𝛾
𝑹𝝁 (36) 

where the matrix R is given by 

𝑹 = 𝜮−1 − 𝜮−1𝑨′(𝑨𝜮−1𝑨′)−1𝑨𝜮−1. (37) 

The portfolio weights vector 𝒘𝑄, the solution to MV2, is used to build portfolio Q, 

called a constrained three-fund rule.  

2.3.2 Relation between orthogonal three-fund rule portfolio and constrained portfolio 

It is interesting to note that the orthogonal three-fund rule portfolio Q presented in 

Section 2.2.1 is the solution to a specific case of the MV2 optimization problem in 

which m=1 and b=1; there, A is a 1 x n all-ones matrix. That is why from now on 

portfolio Q will be the name of the solution to MV2 showed in equation (36).  

Portfolio Q, formerly presented in Section 2.2.1, is a particular case and can be 

expressed in a more general way. As stated earlier, Q is the sum of a minimum-variance 

portfolio G and a maximum performance portfolio H. The portfolios G and H also have 

been introduced earlier, but here again we can show their expressions in a more general 

way: 

Portfolio G is the solution to the following optimization problem: 

𝒘𝐺 = argmin𝒘{𝜎2│𝑨𝒘 = 𝒃} 

            = argmin𝒘{𝒘′𝜮𝒘|𝑨𝒘 = 𝒃} 

   = 𝜮−1𝑨′(𝑨𝜮−1𝑨′)−1𝒃. (38) 
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Portfolio H is the solution to the following optimization problem: 

𝒘𝐻 = argmax𝒘{𝑈(𝒘)|𝐀𝐰 = 𝟎} 

                          = argmax𝒘 {𝒘′𝝁 −
𝛾
2 𝒘′𝜮𝒘|𝐀𝐰 = 𝟎} 

          =
1

𝛾
𝑹𝝁.                                       (39) 

For any vector b, 𝒘𝐺
′ 𝜮𝒘𝐻 = 0, which means that the portfolios G and H are 

orthogonal. Consequently, portfolio Q is the sum of the portfolios G and H and its 

performance is the sum of the individual performances as showed in equation (25). 

From now and throughout the remainder of this paper, we respectively replace the 

specific cases (19) and (21) by their more general expression showed in the equations 

(38) and (39). 

With the ML estimation method, we use the sample mean 𝝁̂ and covariance matrix 

𝜮 ̂ to get a plug-in estimator of 𝒘𝑄: 

𝒘̂𝑄 = 𝜮 ̂−1𝑨′(𝑨𝜮 ̂−1𝑨′)
−1

𝒃 +
1

𝛾
𝑹̂𝝁̂, (40) 

where  

𝑹̂ = 𝜮 ̂−1 − 𝜮 ̂−1𝑨′(𝑨𝜮 ̂−1𝑨′)
−1

𝑨𝜮 ̂−1 (41) 

is the estimator of matrix R in (37).  

2.3.3. The issue of estimation error under the constrained portfolios 

Now that the notion of constrained portfolios has been introduced and that its 

relationship with the orthogonal portfolios is clearly established, we can focus on the 

expected out-of-sample performance and expected loss functions of the constrained 

portfolio Q.  

a) When 𝜮 is known: 

𝔼[𝑈(𝒘̂𝑄)|𝜮] = µ𝐺 −
γ

2
σ𝐺

2 +
ψ2

2γ
−

𝑛 − 𝑚

2γt
, (42) 

ρ(𝐰Q, 𝐰̂Q|𝚺) =
𝑛 − 𝑚

2γt
. (43) 

b) When 𝝁 is known: 

𝔼[𝑈(𝒘̂𝑄)|𝝁] = µ𝐺 −
γ

2
(

𝑡 − 2

𝑡 − 𝑛 + 𝑚 − 2
) σ𝐺

2 + 𝑐1

ψ2

2γ
, (44) 
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𝜌(𝒘𝑄 , 𝒘̂𝑄|𝝁) =
γ

2
(

𝑛 − 𝑚

𝑡 − 𝑛 + 𝑚 − 2
) σ𝐺

2 + (1 − 𝑐1)
ψ2

2γ
, (45) 

where  

𝑐1 = (
𝑡

𝑡 − 𝑛 + 𝑚 − 2
) [2 −

𝑡(𝑡 − 2)

(𝑡 − 𝑛 + 𝑚 − 1)(𝑡 − 𝑛 + 𝑚 − 4)
] . (46) 

c) When both 𝝁 and 𝜮 are unknown and must be estimated: 

𝔼[𝑈(𝒘̂𝑄)] = µ𝐺 −  
γ

2
(

𝑡 − 2

𝑡 − 𝑛 + 𝑚 − 2
) σ𝐺

2 + 𝑐1

ψ2

2γ
− 𝑐2

1

2γ
, (47) 

𝜌(𝒘𝑄 , 𝒘̂𝑄) =
γ

2
(

𝑛 − 1

𝑡 − 𝑛 + 𝑚 − 2
) σ𝐺

2 + (1 − 𝑐1)
ψ2

2γ
+ 𝑐2

1

2γ
, (48) 

where 

𝑐2 =
(𝑛 − 𝑚)𝑡(𝑡 − 2)

(𝑡 − 𝑛 + 𝑚 − 1)(𝑡 − 𝑛 + 𝑚 − 2)(𝑡 − 𝑛 + 𝑚 − 4)
. (49) 

Note: for the reasons explained in Section 2.3.2 and to avoid redundancies, we now 

respectively replace the specific cases (28), (29), (30), (31), (33) and (34) by their 

more general expressions (42), (43), (44), (45), (47) and (48). This means that the 

findings made for the constrained portfolios also apply to the orthogonal portfolio, as 

the latter is only a specific case of the former.   

 

3. PERFORMANCE-LOSS OF THE PORTFOLIO RULES 

3.1 Expressions used to calculate the expected absolute and relative performance 

loss  

When the parameters 𝝁 and 𝜮 are unknown, the expression of the expected absolute 

loss is given by (11). The expected absolute loss of a portfolio 𝑝 as a function of which 

parameters 𝝁 and 𝜮 are known is given by the following expressions. 

a) When 𝜮 is known, meaning that the loss is due to the use of 𝝁̂ instead of 𝝁, the 

expression of the expected absolute loss is:  

𝜌(𝒘𝑝, 𝒘̂𝑝|𝜮) = 𝐸[𝐿(𝒘𝑝, 𝒘̂𝑝|𝜮)] = 𝑈(𝒘𝑝) − 𝐸[𝑈(𝒘̂𝑝|𝜮)]. (50) 

b) When 𝝁 is known, meaning that the loss is due to the use of 𝜮 ̂ instead of 𝜮, the 

expression of the expected absolute loss is: 

𝜌(𝒘𝑝, 𝒘̂𝑝|𝝁) = 𝐸[𝐿(𝒘𝑝, 𝒘̂𝑝|𝝁)] = 𝑈(𝒘𝑝) − 𝐸[𝑈(𝒘̂𝑝|𝝁)]. (51) 
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The expressions of the expected relative loss of a portfolio 𝑝 as a function of which 

parameters are known are given by: 

%𝐿𝑝(𝒘𝑝, 𝒘̂𝑝|𝜮) =
𝜌(𝒘𝑝, 𝒘̂𝑝|𝜮)

𝑈(𝒘𝑝)
∗ 100, (52) 

%𝐿𝑝(𝒘𝑝, 𝒘̂𝑝|𝝁) =
𝜌(𝒘𝑝, 𝒘̂𝑝|𝝁)

𝑈(𝒘𝑝)
∗ 100, (53) 

%𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) =
𝜌(𝒘𝑝, 𝒘̂𝑝)

𝑈(𝒘𝑝)
∗ 100. (54) 

These are the percentage loss expressions of the expected-out-of-sample performances 

from holding portfolios whose parameters have been estimated –through ML 

estimators– instead of using the true parameters. These expressions are important 

because they are the tools that we will use through the document to calculate the 

expected utility of the portfolios and to compare their performances.  

𝔼[𝑈(𝒘̂𝑝)] = 𝑈(𝒘𝑝) ∗ (1 − %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝)) (55) 

The expected utility of a portfolio 𝑝 is given by expression (55). This depends on the 

maximum utility of the portfolio and its expected relative loss. The expected utility is 

what ultimately defines the performance of a portfolio. 

3.2 General observations and considerations for the investor 

In this section, we describe the influence of different variables on estimation error 

and their impact on the performance of the portfolio rules presented above. The studied 

variables are: historical return periods, Sharpe ratio and number of assets in the 

portfolio. For comparability of the results, the coefficient of risk aversion will be held 

constant throughout the document with γ=3. Whenever we make a statement about a 

variable, it is implied that it is for “all other things being equal.” Unless otherwise stated, 

the following findings apply to all the portfolios introduced earlier, hence the use of 𝑝 

in the expressions.   

3.2.1  Periods of historical return 

Including more periods of historical returns (greater t) to calculate the ML 

estimators of 𝝁 and 𝜮  –as described in (5) and (6)– allows those estimators to be closer 
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to the true parameters. Thus, the larger the sample size t, the smaller the estimation 

error, resulting in a reduction in %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝). This means that an investor should 

gather as much data as possible concerning the assets he wants to invest in.  

 

3.2.2 Sharpe ratio of the risky-assets portfolios  

Throughout this paper, whenever it comes to the Sharpe ratio of the constrained 

portfolios Q, we will use ψ –which is actually the Sharpe ratio of portfolio H, part of Q 

– because it is the main driver of the actual constrained portfolios’ Sharpe ratio. 

a) Loss due to the use of 𝝁̂. 

The expected absolute loss due to the use of 𝝁̂ instead of 𝝁 –𝜌(𝒘𝑝, 𝒘̂𝑝|𝜮)– is not 

affected by the Sharpe ratio of the risky-assets portfolio. It is constant and 

independent from it, as shown respectively in the equations (29) and (43) for the 

tangent and the constrained portfolios. But as an increase in the Sharpe ratio of the 

risky-assets portfolio leads to a higher maximum utility, as shown by (4), this also 

leads to a reduction in the relative loss %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝|𝜮). 

b) Loss due to the use of 𝜮 ̂ 

Ceteris paribus, we can see in the equations (15) and (45) –for the tangent and the 

constrained portfolios, respectively– that the higher the Sharpe ratio of a portfolio 

is, the higher 𝜌(𝒘𝑝, 𝒘̂𝑝|𝝁) will be. The latter expression is the expected absolute 

loss due to the use of 𝜮 ̂ instead of the true parameter 𝜮. As shown in (14) and (17) 

for the tangent portfolios and in (45) and (48) for the constrained ones, for a given 

increase in the Sharpe ratio, 𝜌(𝒘𝑝, 𝒘̂𝑝|𝝁) increases parallelly to the expected 

absolute loss due to estimation error for both parameters, expressed by 𝜌(𝒘𝑝, 𝒘̂𝑝).  

However, for the tangent portfolio, the expected relative loss due to the use of  

𝜮 ̂ –expressed by %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝝁)– is constant no matter the Sharpe ratio. This can 

be explained by the fact that an increase in the Sharpe ratio leads to a higher 

maximum utility, offsetting the higher expected absolute loss; hence the unchanged 

expected relative loss, which is the relation between the expected absolute loss and 

the maximum utility of the portfolio as shown in (53).  
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In the case of the constrained portfolios, %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄|𝝁) decreases when the 

Sharpe ratio is higher, meaning that the increased maximum utility is higher than 

the increment of 𝜌(𝒘𝑄 , 𝒘̂𝑄|𝝁). The orthogonality and the use of the minimum-

variance portfolio in the constrained portfolios allow them, by design, to have a 

lower estimation error in the covariance matrix 𝜮 compared to the tangent portfolio, 

thus reducing the performance loss due to the use of 𝜮 ̂. We can also note that the 

Sharpe ratio of a constrained portfolio is always lower than the one of an equivalent 

(with the same set of assets) tangent portfolio.  

c) Loss solely due to the interactive effect from using both estimators 𝝁̂ and 𝜮 ̂  

Similarly, we can see that the expected absolute loss solely due to the interaction 

from using both estimators is constant and independent from the Sharpe ratio. This 

is shown by deducting (29) and (31) from (34) for the tangent portfolio, and by 

deducting (43) and (45) from (48) for the constrained portfolio.  

d) Loss due to the use of the two estimators 𝝁̂ and 𝜮 ̂  

Finally, we notice that even though 𝜌(𝒘𝑝, 𝒘̂𝑝) increases with the Sharpe ratio –as 

shown in (18) and (48) for the tangent and the constrained portfolios, respectively– 

%𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) decreases. Again, since the maximum utility increases with the 

Sharpe ratio, this leads to a reduction in the relative percentage loss. The bottom 

line is that the Sharpe ratio has a positive effect on %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) as it reduces it. 

This is consistent with the modern portfolio theory since the Sharpe ratio is an 

important indicator used in the mean-variance analysis framework.     

3.2.3. Number of assets in the portfolios  

Including more assets in the risky portfolio increases the chance for estimation error 

in 𝝁̂ and 𝜮 ̂, increasing both 𝜌(𝒘𝑝, 𝒘̂𝑝) and %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝), which leads to a 

performance loss. However, in real life, increasing n can also improve the Sharpe ratio 

which improves the maximum utility of the portfolio. If the newly included assets are 

good enough, this improved Sharpe ratio can actually lead to a reduction in 

%𝐿𝑝(𝒘𝑝, 𝒘̂𝑝), compensating the increment of 𝜌(𝒘𝑝, 𝒘̂𝑝). But even in the case where 

both 𝜌(𝒘𝑝, 𝒘̂𝑝) and %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) increase (which is not what the investor wants) with 

the addition of new assets, these higher expected absolute and relative loss can be offset 
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by the higher maximum utility made possible by the improved Sharpe ratio. At the end 

this can lead to a greater expected utility despite a worse 𝜌(𝒘𝑝, 𝒘̂𝑝) and %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝). 

In other words, the expected utility of a given portfolio can be higher than the one of 

another portfolio that has both a lower 𝜌(𝒘𝑝, 𝒘̂𝑝) and %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝). This means that 

an investor should only include more risky assets in his portfolio if it increases its 

Sharpe ratio. 

In addition to the explanations involving the equations related to the portfolios, 

Table 3.1 illustrates some of the analysis that have been explained about the tangent 

portfolios. It shows the relative performance loss in tangent portfolios due to the 

different types of estimation errors –using 𝝁̂ or 𝜮 ̂or both– and its evolution relatively 

to different variables: number of assets and amount of information available. There are 

two panels, on the left, Panel A corresponds to portfolios with a Sharpe ratio of 0.2, 

while Panel B shows portfolios with a Sharpe ratio of 0.4.       
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Table 3.1. %𝑳𝒑(𝒘𝒑, 𝒘̂𝒑): percentage (%) loss of expected utility in tangent portfolios 

due to estimation errors in the means and covariance matrix of returns. 
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It is observed that the amount of information has a positive effect on the 

performance relative loss because it is reduced as t increases. As shown in the 3rd 

column of each panel in Table 3.1, Panel B’s %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝜮) is always lower than that 

of Panel A –in which the Sharpe ratio is lower. By comparing the 4th column of both 

panels, it can be observed that %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝝁) remains the same whether 𝜃 = 0.2 or 

𝜃 = 0.4. As shown in “Interaction” in the 5th column –which is calculated by deducting 

the 3rd and 4th column from the 6th column–, the relative performance loss due to the 

interactive effect from using both estimators decreases as the Sharpe ratio increases. 

Finally, by comparing the two panels we can see that %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇) decreases when the 

Sharpe ratio of the portfolios is higher.    

For further clarification, we will now only focus on the expected relative loss 

%𝑳𝒑(𝒘𝒑, 𝒘̂𝒑) since this is what determines the final performance of the portfolio. We 

will only discuss the expected absolute loss if it helps to understand the behavior of the 

portfolios.  

 

4. COMPARING THE PORTFOLIOS’ PERFORMANCES  

 

In this section, based on our numerical experiences’ results, we compare the 

percentage loss of expected out-of-sample performance due to estimation error of 

sample tangent portfolios with the one of sample constrained portfolios. Later, we 

compare their expected utility. To perform this analysis, we used 14 data sets to create 

14 sample tangent portfolios and 14 sample constrained portfolios that we compared to 

each other.  

Composition of the Data Sets (DS) 1:  

-DS1 is composed of 6 portfolios formed on size and book-to-market. It contains 1,110 

monthly returns and starts in July 1926. 

-DS2 is composed of 6 portfolios formed on size and momentum. It contains 1,104 

monthly returns and starts in January 1927. 

                                                           
1 All data can be found in the following data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

 

  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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-DS3 is composed of 10 industry-based portfolios. It contains 1,110 monthly returns 

and starts in July 1926.  

-DS4 is composed of 24 portfolios formed on size and momentum, originally composed 

of 25 portfolios but one was deleted because data was missing. It contains 1,104 

monthly returns and starts in January 1927.  

-DS5 is composed of 25 portfolios formed on size and book-to-market ratio. It contains 

1,110 monthly returns and starts in July 1926. 

-DS6 is composed of 25 portfolios formed on book-to-market ratio and operating 

profitability. It contains 666 monthly returns and starts in July 1963. 

-DS7 is composed of 25 portfolios formed on size and investment. It contains 666 

monthly returns and starts in July 1963.  

-DS8 is composed of 25 portfolios formed on size and operating profitability. It contains 

666 monthly returns and starts in July 1963 

-DS9 is composed of 30 industry-based portfolios. It contains 1,110 monthly returns 

and starts in July 1926. 

-DS10 is composed of 32 portfolios formed on size, book-to-market ratio and 

investment. It contains 666 monthly returns and starts in July 1963. 

-DS11 is composed of 32 portfolios formed on size, book-to-market ratio and operating 

profitability. It contains 666 monthly returns and starts in July 1963. 

-DS12 is composed of 32 portfolios formed on size, operating profitability and 

investment. It contains 666 monthly returns and starts in July 1963. 

-DS13 is composed of 40 industry-based portfolios, originally composed of 49 

portfolios but 9 were deleted because data was missing. It contains 1,110 monthly 

returns and starts in July 1926. 

-DS14 is composed of 70 portfolios formed on size and book-to-market ratio, originally 

composed of 100 portfolios but 30 were deleted because data was missing. It contains 

1,110 monthly returns and starts in July 1926.   

As explained above, the tangent and constrained portfolios were elaborated with 

the exact same sets of assets, so that the only difference between these portfolios is the 

resources allocated to them, their weights vector. The comparison between tangent and 

constrained portfolios has been made for different values of t periods of monthly 

historical returns: with t=60, t=120, t=240 and t=360 and t=480. The portfolios’ 

composition goes from n=6 to 70 assets. Each asset is a portfolio composed of all the 
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NYSE, AMEX and NASDAQ stocks and is formed on various criteria such as size 

(market equity), book-to-market equity ratio, operating profitability (operating profit 

divided by book equity), investment and industry. 

For a given set of assets, we define the differential loss as the difference between 

the loss of expected utility using a tangent portfolio and the loss of expected utility when 

using a constrained portfolio (with a given number of constraints).  

a) When 𝜮 is known: 

𝛥%(𝑇, 𝑄|𝜮) = %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝜮) − %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄|𝜮), (56) 

where %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝜮) and %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄|𝜮) are the expressions of (52) using a 

tangent and a constrained portfolio, respectively. 

b) When 𝝁 is known:  

𝛥%(𝑇, 𝑄|𝝁) = %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝝁) − %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄|𝝁), (57) 

where %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇|𝝁) and %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄|𝝁) are the expressions of (53) using a 

tangent and a constrained portfolio, respectively. 

c) When none of the parameters 𝝁 or 𝜮 is known: 

𝛥%(𝑇, 𝑄) = %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇) − %𝐿𝑄(𝒘𝑄, 𝒘̂𝑄), (58) 

where %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇) and %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄) are the expressions of (54) respectively 

using a tangent and a constrained portfolio. Equation (58) is the differential loss 

between a tangent and a constrained portfolio for a given set of assets. For example, 

𝛥%(𝑇, 𝑄) > 0 signifies that %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇) is higher than %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄), meaning 

that the constrained portfolio is superior to the tangent one in term of relative loss-

performance, and vice versa.  

 

4.1 Comparing the tangent and the constrained portfolio percentage loss 

In this section, we compared the performance percentage loss of the tangent and 

constrained portfolios using our 14 sets of assets. To ease the comparison between both 

portfolios, the sample constrained portfolios were elaborated with parameters 𝑚 = 1 

and 𝒃 = 1 as in the orthogonal portfolio presented in Section 2.2. For the reasons 

explained in Section 2.3.2, the findings obtained using these parameters also hold with 
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other parameters and therefore with any constrained portfolio Q of the type presented 

in Section 2.3.   

a) 𝛥%(𝑇, 𝑄|𝜮) 

The results concerning the differential loss due to the use of 𝝁̂ are not interesting 

because the expressions of the relative loss knowing 𝜮 are very similar in both the 

tangency and constrained portfolios, as we can observe in (13) for the tangency 

portfolio and in (43) for the constrained portfolios. 

b) 𝛥%(𝑇, 𝑄|𝝁) 

When we compared the performance loss of the 14 tangent portfolios with that of 

the 14 constrained ones, we noticed that 𝛥%(𝑇, 𝑄|𝝁) is always positive. It seems 

to indicate that constrained portfolios give better results than the tangent portfolios 

when it comes to performance loss due to the use of an estimator of the covariance 

matrix 𝜮. Also, all other things being equal, the differential loss of performance 

due to the use of 𝜮 ̂seems to increase with the number of assets n in the portfolio, 

and it tends to zero as the information available t increases. The following tables 

report the results obtained concerning 𝛥%(𝑇, 𝑄|𝝁) and its impact on the expected 

utility for the 14 data sets.      

 

Table 4.1. 𝜟%(𝑻, 𝑸|𝝁): differential loss (%) between 14 tangent and constrained 

portfolios due to the use of an estimator of 𝜮 as a function of the number of assets 

n and the amount of information available t. 

 

Table 4.1 shows that due to the properties of the constrained portfolios,  

𝛥%(𝑇, 𝑄|𝝁) is always positive, regardless of the amount of information available 

or the number of assets in the portfolios. We saw in Section 3.2.2 that the 

orthogonality and the use of the minimum-variance portfolio in the constrained 

portfolios allow them, by design, to have a lower estimation error in the covariance 
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matrix 𝜮 compared to the tangent portfolios. This explains why the performance 

loss due to the use of 𝜮 ̂ is better when using a constrained portfolio rather than a 

tangent one, as Table 4.1 supports. This reduced performance loss can allow the 

constrained portfolio to reach a higher expected utility than the tangent one. The 

following two tables show the expected utility obtained for the tangent and the 

constrained portfolios when 𝝁 is known. 

For reasons of readability, through this paper, the expected utility will always be 

multiplied by 100 in the tables.   

 

Table 4.2 𝑬[𝑼(𝒘̂𝑻|𝝁)]: expected utility of the tangency portfolios knowing 𝝁 

depending on the number of assets n and the amount of information available t. 

 

The expected utility of the tangent portfolio shown in Table 4.2 is used as a 

benchmark against which the performances of the constrained portfolios are 

compared. The cells in which the expected utility of the tangency portfolio is higher 

than that of the constrained portfolios have been highlighted in grey. 

 

Table 4.3. 𝑬[𝑼(𝒘̂𝑸|𝝁)]: expected utility of the constrained portfolios knowing 𝝁 

depending on the number of assets n and the amount of information available t. 

 

When comparing Table 4.3 with Table 4.2, it can be observed that the expected 

utility of the constrained portfolios is always higher than the one of the tangent 
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portfolios when 𝑡 ≤ 120 and knowing 𝝁. When more information is available, the 

expected utility of the tangent portfolios tends to be higher than the one of the 

constrained portfolios. It means that the constrained portfolios’ ability to reduce 

estimation error when using an estimator of 𝜮 is more significant when the 

information available is lower. The cells in which the expected utility of the 

tangency portfolio is higher than that of the constrained portfolios have been 

highlighted in grey.   

c) 𝛥%(𝑇, 𝑄) 

Constrained portfolios seem to lead to a lower relative loss of performance than the 

tangent ones when the number of assets composing them is reduced. 𝛥%(𝑇, 𝑄) is 

positive when n is lower but is more likely to be negative as n increases. The 

threshold seems to be around n=25. This can be explained by the fact that a higher 

n allows the two portfolios to reach a higher Sharpe ratio, leading to a higher 

maximum utility in both; however, the tangent portfolio is entirely oriented into 

Sharpe ratio maximization, as opposed to the constrained portfolio that allocates a 

part of its resources into the minimum-variance portfolio G that enters its 

composition. This signifies that when n is already high, –which means that the 

portfolio is already highly diversified– the marginal reduction in variability of Q 

due to the increased diversification is lower than the marginal increase in return. 

This makes the minimum-variance portfolio G used in the constrained portfolio 

redundant, dragging its Sharpe ratio down and making its maximum utility lower 

than the one of the tangent portfolio. As a result, 𝜌(𝒘𝑝, 𝒘̂𝑝) is distributed among a 

higher maximum utility with the tangent portfolio, in which the Sharpe ratio and 

maximum utility increase faster than in the constrained portfolio when assets are 

added in the portfolios’ set; hence the obtention of a higher %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) in the 

constrained portfolio than in the tangent one when n is already high. To put it 

simply, 𝛥%(𝑇, 𝑄) is sensitive to the relation between the maximum utility of the 

constrained portfolio and the one of the tangent portfolio. Based on our results, it 

seems that 𝛥%(𝑇, 𝑄) is negative –indicating that the relative performance loss of 

the constrained portfolio is worse than the one of the tangent portfolio– when the 

maximum utility 𝑈(𝒘𝑄) of the constrained portfolio represents around 85% or less 

of the maximum utility 𝑈(𝒘𝑇) of the tangent portfolio. The results of our numerical 
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experiments on 𝛥%(𝑇, 𝑄) are presented in Table 4.4. The top part shows the 

differential loss between the two portfolios, the bottom part shows the 

characteristics of the portfolios: their Sharpe ratio, their maximum –potential– 

utility and relation between them.       

 

Table 4.4. 𝜟%(𝑻, 𝑸): differential loss (%) between 14 tangent and constrained 

portfolios due to the use of both estimators 𝝁̂ and 𝜮 ̂ and depending on the 

number of assets n and the amount of information available t. 

 

All cases in which 𝛥%(𝑇, 𝑄) are negative are highlighted in grey. As stated above, 

we notice that these cases tend to happen when the number of assets is high (𝑛 ≥

25), and more specifically when the maximum utility of the constrained portfolios 

represents 88% or less of the maximum utility of the tangent portfolios. This is 

depicted in the last row of Table 4.4. As seen in the second row of Table 4.4, the 

constrained portfolio seems to always lead to an overall lower %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) than 

the tangency portfolio when the number of periods of historical returns is small 

(𝑡 ≤ 60). The lower the information amount, the higher the estimation error risk, 

and as the constrained portfolio is designed to mitigate estimation errors, it follows 

that this portfolio does better than the tangent one in a situation of high estimation 

error.  

On the contrary, and as seen before, the estimators become more precise as t 

increases. This means that estimation error tends to 0 when 𝑡 →  ∞. This fact holds 

for both the sample tangent and the sample constrained portfolios. The consequence 
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is that the differential loss using any estimator also tends to 0 as t increases. It 

applies whether the estimation error comes from using 𝝁̂ or 𝜮 ̂or both. On Figure 

4.1 we clearly see that the relative performance losses of both portfolios converge 

and tend to 0 as the amount of information increases.  

Figure 4.1. 𝜟%(𝑻, 𝑸): differential loss (%) between the relative performance loss 

of a tangency portfolio and that of a constrained portfolio due to estimation error 

in the parameters with a given set of assets (DS3), n=10. 

 

In Figure 4.1, we can note that the differential loss is always positive, even with as 

much information as t=480. This signifies that the relative performance loss of the 

constrained portfolio is better than the one of the tangency portfolio, despite the 

fact that the latter has a Sharpe ratio more than twice as high as the one of the 

former. This suggests that the constrained portfolio is very good at mitigating the 

impact of estimation error, or at least better than the tangent portfolio in this respect.  

We note that this occurs when little information is available and that the amount of 

assets is limited below a certain threshold. 

 

As shown in the following tables, the fact that 𝛥%(𝑇, 𝑄) is positive –meaning that 

%𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄) is lower than %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇)– can be significant enough to allow the 

constrained portfolios to reach a higher expected utility than the tangent ones. This 

is notably the case when 𝑡 ≤ 120 and when 𝑛 ≤ 24.     
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Table 4.5. 𝑬[𝑼(𝒘̂𝑻)]: expected utility of the tangent portfolios using both 

estimators 𝝁̂ and 𝜮 ̂, depending on the number of assets n and the amount of 

information available t. 

 

The expected utility of the tangent portfolios in Table 4.5 is the benchmark against 

which the performances of the constrained portfolio are compared. The cells 

highlighted in grey show the cases in which the expected utility of the tangency 

portfolio is higher than that of the constrained portfolios.   

 

Table 4.6. 𝑬[𝑼(𝒘̂𝑸)]: expected utility of the constrained portfolios using both 

estimators 𝝁̂ and 𝜮 ̂, depending on the number of assets n and the amount of 

information available t. 

 

As explained earlier, and now by comparing Table 4.5 and Table 4.6, we observe 

that the estimation error mitigation profile of the constrained portfolio appears to 

result in a greater expected utility than that of the tangent one when 𝑡 ≤ 120 and/or 

when 𝑛 ≤ 24. The cells highlighted in grey show the cases in which the expected 

utility of the tangency portfolio is higher than that of the constrained portfolios.   
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   4.2. Constrained vs tangent portfolios: adding constraints  

Adding constraints to a given portfolio reduces its maximum utility, so that in 

theory if we knew all the parameters it would be counterproductive to do so. But, if we 

are in the presence of estimation error, as is the case in real life, the impact of estimation 

error could be reduced by adding constraints to the portfolio.  

As explained in Section 2.3.1, a portfolio can be constrained by using a matrix A 

that contains the coefficients of the constraints and with an m-vector b. As a reminder, 

m is the number of constraints to which we subject the portfolios.  

The following example illustrates how we conducted the present experiment. In 

matric A, we want the sum of each row to be 
𝑛

𝑚
 and the sum of each column to be 1. 

Additionally, for simplicity, the coefficients of the constraints are either unit entries or 

zeros and the portfolios can only be subject to m constraints if 
𝑛

𝑚
 is an integer. Also, as 

shown in the following example, the unit entries have been arbitrarily added one after 

another and each vector b row’s value is 1/𝑚, so that the total sum of b’s rows is 1.2 

 

In this example, we have m=3 and n=6 which gives us 

𝐀 = [
1 1
0 0
0 0

   
0 0
1 1
0 0

   
0 0
0 0
1 1

]  and 𝒃 = [
1 3⁄

1 3⁄

1 3⁄
].   

Whenever possible, we subjected the 14 portfolios introduced in section 4.1 to this 

constraining method, with m=1 (as used in 4.1), m=2, m=3, m=4, m=5, m=6 and m=8 

constraints.  

 

The results appear in the following tables, they show the relative performance loss 

of the tangent and the different constrained portfolios depending on their number of 

constraints and assets. Each table corresponds to a given level of information, Table 4.7 

shows the results for t=120 and Table 4.8 for t=480. In Table 4.7 and Table 4.8, the 

relative performance loss of the tangent portfolio (3rd column) is our reference point. 

Cells highlighted in grey show cases in which the relative performance loss of the 

constrained portfolios is higher than the one of the tangent portfolios.  

                                                           
2 The method used to add constraints to the portfolios is arbitrary and used for simplicity. There are other ways to constrain the 

portfolios. 
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Table 4.7. %𝑳𝒑(𝒘𝒑, 𝒘̂𝒑): relative performance loss (%) of tangent and 

constrained portfolios depending on their number of constraints and assets for a 

given level of information t=120. 

 

Table 4.7 shows that the constrained portfolios are almost always better at 

mitigating the performance loss due to estimation error than the tangent ones. 

Furthermore, for 𝑡 = 120, there is always at least one constrained portfolio with m 

constraints so that %𝐿𝑄(𝒘𝑄 , 𝒘̂𝑄) < %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇).  
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Table 4.8. %𝑳𝒑(𝒘𝒑, 𝒘̂𝒑): relative performance loss (%) of tangent and 

constrained portfolios depending on their number of constraints and assets for a 

given level of information t=480. 

 

According to our observations, there is always at least one portfolio with m 

constraints that allows us to have %𝐿𝑄(𝒘𝑄, 𝒘̂𝑄) < %𝐿𝑇(𝒘𝑇 , 𝒘̂𝑇), even for values of t 

as big as 𝑡 = 480.  

We noticed that up to a certain point, the greater m is, the more the estimation error 

tends to be reduced; however, adding too many constraints can also exacerbate the 

relative performance loss of the portfolios. For example, we can clearly see it in the last 

column of Table 4.7 and Table 4.8 with DS11. In Table 4.8, adding m=8 constraints to 

the 11th Data Set has the effect to increase the relative performance loss to 66.74%, 

while the value is at 46.31% when only m=2 constraints are added.  

Overall, since most cells are not highlighted, results seem to show that –up to a 

certain point– adding constraints is a very effective way to reduce estimation error. This 

is in line with our hypothesis that the addition of constraints can have a positive impact 

on estimation error reduction. This observation does not mean that the expected utility 

of the constrained portfolios will necessarily be higher than the one of the tangent 

portfolios, as constraining the portfolio also reduces their maximum utility. But within 
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the 14 data sets, we noticed that for 𝑡 ≤ 240, there is always a three-fund portfolio rule 

with m constraints that outperforms the classic tangent portfolio; not only in terms of 

estimation error but also regarding its expected utility. This means that for 𝑡 ≤ 240, it 

seems to be worth it to sacrifice some maximum utility by adding constraints.  

In Table 4.9, Table 4.10 and Table 4.11, the expected utility of the tangent portfolio 

(3rd column) is our reference point. Cells highlighted in grey show cases in which the 

expected utility of the constrained portfolios is lower than the one of the tangent 

portfolios. Results are shown for the levels or information t=60, t=120 and t=240. As a 

reminder, we are still using the constraining method explained in Section 4.2. 

 

Table 4.9. 𝔼[𝑼(𝒘̂𝒑)]: expected utility of tangency and constrained portfolios 

depending on their number of constraints and assets for a given level of 

information t=60. 

 

 

In Table 4.9 the expected utility of the constrained portfolios is always higher 

that of the tangency portfolios when t=60, no matter the amount of constraints. 
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Table 4.10. 𝔼[𝑼(𝒘̂𝒑)]: expected utility of tangent and constrained portfolios 

depending on their number of constraints and assets for a given level of 

information t=120. 

 

Again, in Table 4.10, we observe that the expected utility of the constrained 

portfolios is always higher that of the tangent portfolios when t=120, no matter the 

amount of constraints. 

 

Table 4.11. 𝔼[𝑼(𝒘̂𝒑)]: expected utility of tangent and constrained portfolios 

depending on their number of constraints and assets for a given level of 

information t=240. 
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We can see in Table 4.11 that within our data sets and for t=240, there is always at 

least a constrained portfolio with a given m amount of constraints that dominates the 

tangent portfolio in terms of expected utility.  

Below, with Table 4.12, Table 4.13 and Table 4.14, we highlight the fact that 

despite leading to a lower maximum utility, adding constraints to a portfolio can allow 

it to achieve a higher expected utility than a tangent portfolio. As a reminder, 𝑈(𝒘𝑝) 

represents the maximum potential –theoretical– utility that can be reached for a given 

portfolio p.   

 

Table 4.12. 𝔼[𝑼(𝒘̂𝒑)]: evolution of the expected and maximum utility of a 

portfolio with a given set of assets (DS4) as a function of the number of 

constraints it is subjected to, and dependent on the amount of information t. 

 

Table 4.12 clearly shows that adding constraints can indeed increase the expected 

utility of the portfolio, despite a reduction in the maximum utility as observed in the last 

row. We also notice that in the specific case shown by the table, the constrained 

portfolios always yield a higher expected utility than the tangent portfolio, even with as 

much information as t=480. It is interesting to note that in this specific case, the most 

constrained portfolio (with m=8) is also the one that leads to the highest expected utility, 

while simultaneously having the lowest maximum utility. This means that the 

constrained portfolio does so well at mitigating the relative performance loss (as 

suggested by Table 4.7 and Table 4.8) that it does more than compensate for its lower 

maximum utility. 
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Table 4.13. 𝔼[𝑼(𝒘̂𝒑)]: evolution of the expected and maximum utility of a 

portfolio with a given set of assets (DS3) as a function of the number of 

constraints it is subjected to, and dependent on the amount of information t. 

 

Table 4.13 shows results similar to those presented in Table 4.12. It is interesting 

to note the variability of the expected utility depending on the amount of constraints. 

For example, in Table 4.13, for t=360, the expected utility of the constrained portfolio 

with m=1 is 0.14 while the expected utility of the constrained portfolio with m=5 is 

0.34. The only difference between these two constrained portfolios is their amount of 

constraints, they are entirely responsible for these variations in the expected utility.     

 

Table 4.14. 𝔼[𝑼(𝒘̂𝒑)]: evolution of the expected and maximum utility of a 

portfolio with a given set of assets (DS13) as a function of the number of 

constraints it is subjected to, and dependent on the amount of information t. 

 

Table 4.14 shows that the results obtained earlier hold even when n is high. Here again, 

despite leading to a lower maximum utility, the constrained portfolios can outperform 

the expected utility of the tangent ones. It is important to note that adding more 
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constraints does not necessarily imply a higher utility; for example, as highlighted in 

grey in Table 4.14, with t=60 the expected utility of the portfolio with m=8 constraints 

is much lower than the expected utility of the portfolio with m=2 constraints.   

In the appendix, we explained what determines whether a tangent portfolio will 

have a higher or lower expected utility than that of a constrained portfolio. To 

summarize, our findings indicate that tangent portfolios rely on their higher maximum 

performance, which are driven by their higher Sharpe ratio, while the constrained 

portfolios are based on their better estimation error mitigation profile. 

In the next section we tried to determine if the expected utility of the constrained 

portfolios can be improved by randomizing their constraints. 

4.3 Going further: randomizing constrained portfolio vs other portfolio rules  

As explained previously, the unit entries used in matrix A have been arbitrarily 

added one after another for simplicity. In this section, we randomized the unit entries in 

matrix A to see if the results could be further improved. The other characteristics of the 

method used in Section 4.2 to define matrix A and vector b remain unchanged. 

Using MATLAB, the unit entries have randomly been rearranged many times. Each 

time, for a given amount of constraints, we registered the corresponding performances 

of the randomized constrained portfolios: their %𝐿𝑝(𝒘𝑝, 𝒘̂𝑝) and their maximum 

potential utility, which are affected by A. With these performances, we have calculated 

and reported the expected utility of the portfolios. We repeated the procedure with 4 

data sets: DS1 and DS2 (n=6), DS3 (n=10) and DS4 (n=24). Whenever it was possible, 

we constrained them with m=2, m=3 and m=4 constraints. We could not do the 

experiment with more than 24 assets because of limiting computing capacity in creating 

combinations for matrix A. The results obtained, however, are significant enough to 

draw some conclusions.  

The following table reports the sample maximum, minimum and average expected 

utility obtained by randomizing matrix A for two different levels of information: with 

t=60 and t=120. The expected utility of the corresponding tangent portfolios for the data 

sets have been added as a benchmark.  
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Table 4.15. 𝔼[𝑼(𝒘̂𝒑)]: sample maximum, minimum and average expected utility 

obtained by randomizing the matrix containing the coefficients of the constraints, 

for two different levels of information. 

 

In Table 4.15, we can observe that the difference between the sample maximum 

and minimum expected utility can be significant. It is also showed that the sample 

average utility of the randomized constraints is higher than the expected utility of the 

equivalent tangent portfolios.  

Here, it is important to keep in mind that the difference found in the expected utility 

is entirely due to the order in which the coefficients of the constraints have been 

randomly rearranged in matrix A. This shows that the expected utility of the constrained 

portfolios can indeed be improved by randomizing the constrained assets. We can see 

by comparing the maximum and the minimum utility within each portfolio for a given 

m number of constraints that the order in which the assets are constrained does matter 

and has a significant impact on the performance of the portfolios. It can be concluded 

that for each constrained portfolio, there is an optimal amount of constraints and an 

optimal way to combine them. Such an optimal constraining method would maximize 

the expected utility of the portfolio and goes even further than the results presented in 

Section 4.2, in which the coefficients of the constraints in matrix A were simply added 

one after another.   

There are several limitations to the randomization of constraints, however. First, 

since it is generated randomly, there is no way to ensure that the arrangement of the unit 

entries (coefficients of the constraints) is optimal. Second, depending on the number of 

assets and constraints the portfolios are subjected to, we may be limited by memory and 
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computing power given the many possible combinations for any matrix A. This means 

that the best we can do is to generate as many combinations as possible and use the one 

that allows us to achieve the maximum expected utility.   

4.4 Control experiment: equally weighted portfolios vs all the portfolio rules 

In this section, we compared the expected utility of the constrained portfolios to 

that of the equally weighted portfolio, which is constructed by assigning the same 

weighting to each asset in the portfolio.  

When 𝑡 ≤ 60 and/or when n is high (ranging from 32 to 40 assets, according to our 

results), meaning that the risk for estimation error is high, an equally weighted portfolio 

always outperforms all the portfolio rules. Then, all other things being equal, the higher 

t, the less likely the equally weighted portfolio is to be better than the portfolio rules. 

The equally weighted portfolio is the safest way for an investor to build a portfolio as it 

does not rely on any estimation. It dramatically reduces its maximum utility, but on the 

other hand, it will also invariably provide a higher utility than any portfolio rule when 

little information is available. This method is a very conservative yet efficient way of 

building a portfolio. In the following table, we show the different expected utilities 

depending on whether we use of an equally weighted portfolio (3rd column), a tangency 

portfolio or constrained portfolios.  

Table 4.16. 𝔼[𝑼(𝒘̂𝒑)]: expected utility for equally weighted portfolios and 

different constrained portfolios with a given reduced level of information, t=60. 
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Table 4.16 shows that the equally weighted portfolio method largely dominates 

when little information is available. Except for the case in DS2 with m=3, the expected 

utility using the tangency and constrained portfolios is always negative while the one 

of the equally weighted portfolio is always positive.  

Table 4.17. 𝔼[𝑼(𝒘̂𝒑)]: expected utility for equally weighted portfolios and 

different constrained portfolios with a given level of information, t=120. 

 

The results showed in Table 4.17 are similar to those of Table 4.16. The difference is 

that here, in Table 4.17, more information is available. This allows portfolios with fewer 

assets (n=6) to eventually achieve greater expected utility than that of the equally 

weighted portfolio. This is no longer the case when data sets are composed of a larger 

amount of assets. The portfolios that have a higher expected utility than that of the 

equally weighted portfolio are highlighted in grey. 
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Table 4.18. 𝔼[𝑼(𝒘̂𝒑)]: expected utility for equally weighted portfolios and 

different constrained portfolios with a given level of information, t=240. 

 

 

In Table 4.18, even more information is available. This makes the use of the 

equally weighted portfolio less interesting. The portfolios that have a higher expected 

utility than that of the equally weighted portfolio are highlighted in grey. When the 

amount of assets is limited below the threshold around 32 ≤ 𝑛 ≤ 40, the expected 

utility of the tangent and specifically of the constrained portfolios can be much greater 

than the one of the equally weighted ones. This means that the equally weighted 

portfolio is more interesting when little information is available and/or when the 

portfolios are composed of many assets (𝑛 ≥ 32).  

 

5. CONCLUSION  

 

After analyzing the impact of estimation error, we saw different ways to mitigate it 

and then compared them to each other. It has been shown that in certain conditions, 

adding constraints to the portfolios is an effective way to reduce estimation error and 

even to increase their expected utility, notably when the amount of assets in the 

portfolios is limited to a certain quantity (𝑛 ≤ 24) and when the amount of information 

is moderate to high (for 60 < 𝑡 ≤ 480). To summarize, it can be worth it to sacrifice 

some maximum utility and to add constraints in order to gain precision in the estimation. 
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Based on our results, it seems that for an amount of assets around 25 ≤ 𝑛 ≤ 36 

and when sufficient information is available –around (𝑡 ≥ 360)– it is preferable to use 

the classic tangent portfolio method because this method aims for the highest utility. In 

the case where 60 < 𝑡 ≤ 240, it seems to be better to use the constrained portfolio 

method as it reduces estimation error without sacrificing too much maximum utility, 

leading to a better expected utility. Then, when the estimation risk is too high, namely 

when 𝑡 ≤ 60 or that the quantity of assets in the portfolio exceeds a certain threshold 

(estimated around 𝑛 ≥ 36), the use of an equally weighted portfolio is encouraged as 

opposed to other portfolio rules that would lead to an excessive estimation error. This 

would ultimately result in a negative utility.  

Table 5.1 summarizes which method to use based on what our observations 

suggest. 

 

Table 5.1. Most appropriate portfolio construction method based on our 

observations and focusing on the expected utility.3 

 

Finally, randomization of the matrix used to constrain portfolios seems to be an 

interesting and promising approach because our results showed that it can lead to even 

higher expected utility than using arbitrary constraints as conducted in our research. 

 

 

 

 

 

 

 

                                                           
3 This table only provides general guidelines; it is not an absolute reference. 
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