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The World Wide Web has become a vital supplier of information for organizations in order to carry on such tasks as 
business intelligence, security monitoring, and risk assessments. By utilizing the task-technology fit (TTF) theory, we 
investigate the issue of when open-domain question-answering (QA) technology would potentially be superior to 
general-purpose Web search engines. Specifically, we argue theoretically and back up our arguments with a user 
study that the presence of fusion (information synthesis) is crucial to warrant the use of QA. At the same time, many 
information seeking tasks do not require fusion and, thus, are adequately served by traditional keyword search 
portals (Google, MSN, Yahoo, etc.). This explains why prior attempts to demonstrate the value of QA empirically 
were unsuccessful. We also discuss methodological challenges to any empirical investigation of QA and present 
several solutions to those challenges, validated with our user study. In order to carry our study, we created a novel 
prototype by following the Design Science guidelines. Our prototype is the first of its kind and is capable of 
answering list questions, such as What companies own low orbit satellites? or In which cities have illegal methyl-
methionine labs been found? This investigation is only a precursor to a full-scale empirical study, but it serves as a 
medium to overview the state of the art QA technologies and to introduce important theoretical and empirical 
concepts involved. Although we did not find empirical evidence that one technology is uniformly better than the 
other, we discovered that once the user accumulates experience using QA, he/she can make an intelligent decision 
whether to use it for a particular task, which leads to the user to be more productive on average with the same tasks 
compared to when there is no choice of technology. 
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I. INTRODUCTION 

A critical component for the success of a modern enterprise is its ability to take advantage of all the available 
information in a timely manner. The World Wide Web represents a rich source of information and allows access to 
knowledge that was not readily available before [Katz et al., 2004; Lyman and Varian, 2000; Roussinov et al., 2008]. 
Organizations benefit from the Web as a source of information in different ways: it contains information about 
customers’ perception of the market, the history and reputation of potential competitors or suppliers, and, in today’s 
increasingly global economy, the background about the countries and cultures where a company may choose to 
operate. Technical personnel typically use the Web to look for the tips and ideas on solving common IT and more 
general business problems or for reviews of important trends [Robles-Flores, 2009]. 

Since the average computer user spends half an hour each day searching the Web by using the popular portals, it is 
not surprising that the leading portals (e.g., Google and Yahoo together) started to rival the prime-time advertising 
revenues of America’s three big television networks: ABC, CBS, and NBC [Mills, 2005]. The three most popular 
search portals (Google, Yahoo, Microsoft’s Bing) are all among the top ten most popular sites [Alexa, 2010]. Their 
success prompts investors and IT practitioners to ask the question, “What comes next?”. Although it is hard to 
provide a definite answer to this at the moment, we can find at least a hint in the widely publicized Jeopardy match 
between the IBM computer called Watson (currently the fastest, as well as having the largest memory in the world) 
and the best human players [CNN Money, 2011]. 

Web search engines are commonly used to locate information for business analysis; however, they typically retrieve 
a large number of pages only to overload business analysts with irrelevant information [Chung et al., 2005; Lyman 
and Varian, 2000; Roussinov et al., 2008]. More fine-grained technologies capable of understanding (for example, 
Business Intelligence (BI) tasks) and representing their results in comprehensible format are emerging. Among 
these emerging technologies is the automated Question Answering (QA) technology, which serves to locate, extract, 
and represent a specific answer to a user question expressed in natural language. A QA system takes an input, 
such as “How many cars are sold in Turkey?” and provides an output, such as “2,000 to 3,000 vehicles are sold in 
Turkey each year,” or simply “2500.” 

In spite of breakthroughs, a fully automated question-answering (QA) system remains an extremely challenging task. 
On the other side, keyword-based search portals, such as Google, Yahoo, and MSN, have significantly improved 
their accuracy at pointing right pages by counting the number of occurrences of the query words, estimating 
popularity of the pages on the Web [Brin and Page, 1998] and filtering those created by spammers. The search 
engines, however, are still not designed to handle questions. Instead, their algorithms are based on the classical 
“bag of words” model, which ignores the order of keywords. For example, the query “Who is the largest producer of 
software?” will be treated exactly the same as “largest software producer,” which brings non-intuitive results: pages 
about largest producers of dairy products, trucks, and “catholic software,” but not the answer you would expect (e.g., 
“Microsoft”). Thus, even if the correct answer is among the search results, the user still needs to review the output 
“snippets” to locate it. 

Most of the research on automated question-answering systems has been focused on the underlying algorithms. 
The results from TREC [Voorhees and Buckland, 2007] annual evaluations—the standard benchmarks in the 
community of QA researchers—have demonstrated that the state of the art QA systems are indeed capable of 
delivering accuracy superior to keyword-based information retrieval systems. However, the tests so far have been 
performed in a “batch” mode only, leaving the interaction between the user and the system completely out of the 
picture. The outcomes of the empirical tests involving users have so far been inconclusive [Voorhees and Buckland, 
2007]. 

As a result, it is still not clear, whether QA actually helps and what its impact is on several types of business tasks 
(e.g., business intelligence tasks). Indeed, since it is often possible to send a question or handpicked keywords to a 
search engine (e.g., Google) and “eye-ball” the correct answer, many researchers and practitioners doubt whether 
QA is ever going to make an impact large enough to become a “killer application” and the “Web search of tomorrow” 
as it was predicted [Clayburn, 2005]. More formal evaluations [Roussinov et al., 2008] show that a correct answer to 
a question submitted verbatim as a query indeed frequently occurs within the top snippets returned by a Web search 
engine. The QA promise and the need for its empirical evaluation have been articulated by other researchers 
[Maybury, 2003], but not yet carried out in practice with the exception of narrow domains: e.g., Roussinov and 
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Robles-Flores [2007] established that QA can be more effective in locating malevolent Web content than a regular 
search engine. 

As we elaborate further in this article, we suggest two possible explanations for the lack of successful empirical 
investigation of the QA technology: (1) The top-of-the-line systems are not available for public use; thus the studies 
involving them are hard to conduct and replicate. (2) The theoretical framework to perform such a study is still 
nonexistent. This article shows that those two challenges can be overcome. Specifically, we claim the following 
contributions: 

1. We show how the Task-Technology Fit (TTF) model [Goodhue and Thompson, 1995] can serve as the 
theoretical framework for evaluating QA and its applicability for the business intelligence (and similar) tasks. 

2. By applying TTF, we explain why so far QA has not been shown to be more effective than traditional 
keyword searching (KW). We formalize the notion of information fusion and argue that its presence within 
the search task is necessary for QA to add value. Previous research ignored this crucial component, which 
can explain the lack of successful or conclusive findings. 

3. By following the guidelines of Design Science Research [Hevner et al., 2004], we have implemented and 
tested a research prototype, the first to our knowledge Web question-answering system capable of handling 
list questions, for example, What companies own low orbit satellites? or In which cities have illegal methyl-
methionine labs been found? We define list questions as questions that expect the answers to be stated in 
the form of a list of items. This is consistent with the related literature (e.g., Maybury, 2003). This definition 
also excludes why or how to questions, since they require different treatment by the current algorithms and 
are not supported in the system involved here. The prototype is based on the replicable technology and 
publicly open (not proprietary) algorithms. 

4. To validate our evaluation methodology, we have performed a large-scale user study with our prototype. 
The users were able to compare searching for answers using our prototype and the traditional keyword-
based search engine (Google) on a set of information-seeking tasks. These tasks were also suggested by 
users. We report several important observations and lessons learned from our study. 

The next section presents the Task-Technology Fit (TTF) theory as our theoretical framework, followed by a section 
describing our prototype, followed, in turn, by the section describing our user study. The last section presents 
conclusions, limitations, and possible future directions. 

II. THEORETICAL FRAMEWORK 

Task-Technology Fit 

The Task-Technology Fit (TTF) model was first introduced into the Information Systems (IS) literature to help 
understand the link between information systems and individual performance. Goodhue and Thompson [1995] 
presented and tested the Task-Technology Fit model that focuses on measuring how a certain system fits certain 
tasks. The fit was defined by the correspondence (matching) between the capabilities of the technology and the 
requirements of the task: “the degree to which a technology assists an individual in performing his or her portfolio of 
tasks.” Goodhue et al. [1995] established that this “fit” had a direct impact on individual performance and utilization 
of the system. The latter, in turn, also impacted the performance. Eight components of the fit were proposed and 
measured by Goodhue et al. [1995] through a questionnaire. An instrument was developed later based on decision-
making tasks to measure the fit in twelve dimensions [Goodhue, 1998]. The fit was assessed by experts in Zigurs 
and Buckland [1998]. In the follow-up work [Zigurs et al., 1999], a categorization of tasks was used along with 
characteristics of the technology. 

A wide range of tasks has been used to evaluate TTF in the studies that followed, including software maintenance 
[Dishaw and Strong, 1998a; Dishaw and Strong, 1998b; Dishaw and Strong, 1999], answering managerial questions 
[Goodhue et al., 2000], decision making and daily transaction tasks [Goodhue, 1998; Goodhue and Thompson, 
1995], managerial tasks using quantitative information [Goodhue 1995], tasks related to searching a library 
catalogue [Staples and Seddon, 2004], information seeking [Chen et al., 2006], tasks related to academic research 
[Goodhue et al., 1997], online shopping [Klopping et al., 2004], and group support systems [Zigurs and Buckland, 
1998; Zigurs et al., 1999]. However, none of the tasks involved finding answers on the Web nor aggregation of 
information from multiple sources (fusion), which is the focus of this work. 
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Information Seeking and Fusion 

Information seeking has been defined as a cognitive process to acquire information [Marchionini, 1995]. 
Characteristics associated with information seeking include: (1) A high level process “in which humans purposefully 
engage in order to change their state of knowledge” [Marchionini, 1995], (2) Purposive behavior [Wilson, 2000], and 
(3) “Conscious effort to acquire information in response to a need or gap” [Case, 2002]. 

Information-seeking tasks often have a specific item of information as the target, for example the address of The 
Sunday Times newspaper in London. Sometimes, however, people may need to compile a list of all newspapers in 
London. We define the “Fusion of Information” as the use of multiple sources in order to identify a complete set of 
the items needed, for example to answer a specific question. Although the idea of combining information from 
different sources is not new, our current study is the first in considering it an important dimension in the context of 
Task-Technology Fit. 

Keyword Searching 

Today’s most common technology to find information on the Web is keyword searching (KW), supported by popular 
information seeking portals such as Google, Yahoo, and Microsoft’s Bing. This technology is freely available and 
enjoys growing popularity among Internet users [Alexa, 2010]. Although it has evolved to the point of satisfying most 
of the users, the need for its further improving is also often noted. 

We consider two perspectives to look at today’s Web search engines: (1) from the user’s perspective, KW is 
characterized by the use of keywords as input, e.g., “Denver Aspen,” and the output in the form of a list of snippets 
(brief paragraphs/sentences, extracted from Web documents), which include the links to the actual pages, (2) from 
the algorithm perspective, its objective is to match the input keywords with words in Web documents, taking into 
consideration the link structure and the popularity of the pages implied by that structure [Brin and Page, 1998]. 

Question Answering 

A new alternative to find information on the Web is automated question answering (QA). This research focuses on 
completely automated, open (not restricted) domain, Web-based question answering. As it typically is in the 
literature on question answering [Maybury, 2003], “open domain” means that the question topics are not restricted, 
as, for example, they can be to medical, biological, or other domains. Thus, in open domain QA, anything can be 
asked and any source can be used to provide an answer. 

The goal of a question-answering system is to retrieve answers to questions, rather than full documents or 
passages, as most information retrieval systems currently do [Dumais et al., 2002]. Question Answering (QA) 
technology locates, extracts, and presents a specific answer to a user question expressed in natural language. For 
example, a QA system takes as input “How big is our galaxy in diameter?” and produces the output “Our galaxy is 
100,000 light years in diameter” along with link(s) to source page(s). 

Web Question Answering (WebQA) technology is a technology that uses the entire Web as the source of answers. 
Fully automated Web question-answering systems are still under development, in spite of occasional claims of 
success by the popular search portals. 

As we did with keyword searching technology, in order to study the differentiating characteristics of the Web QA 
technology, we consider two perspectives as well: (1) From the user’s perspective, it takes as input a question in a 
natural language and produces output consisting of snippets (short paragraphs). (2) From the perspective of the 
algorithm, Web QA technology uses all the words entered in the question. Common question patterns are 
recognized and used to find the answers matching previously learned answer patterns. 

An important type of QA system is the one that can support list questions as defined in the Introduction section. 
Unless the complete set of answers is available from a single source (page), supporting list questions requires 
fusion of information as defined above. 

Comparing: The Fusion and the Fit 

In this section, we argue that the presence of fusion is crucial for the QA technology to have a better fit than KW 
technology. An earlier study on TTF [Goodhue, 1995] confirmed the relevance of the “fit” construct to assess the 
value of an information system for supporting decision making tasks. A later instrument was developed [Goodhue, 
1998] to measure fit along twelve dimensions as a refinement of the earlier eight-factor version. Zigurs and Buckland 
[1998] defined fit in terms of profiles composed of consistent task contingencies (outcome multiplicity, solution 
scheme multiplicity, conflicting interdependence, and solution scheme/outcome uncertainty), and system elements. 
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In general, TTF research describes two ways to assess the fit [Staples and Seddon, 2004]: (a) facets-of-fit approach, 
and (b) predicted-outcomes approach. Our research follows the former. An example for the facets-of-fit approach is 
the task of cooking spaghetti with two possible sets of tools [Staples and Seddon, 2004]. Toolset One is a large 
metal pot and a gas cooker, while Toolset Two is a plastic bowl and open fire. The facets of the task requirements 
are (a) the container should hold sufficient water, (b) there should be a reliable, controllable heat source, and (c) the 
container should withstand the heat for ten to fifteen minutes. Toolset One meets all three requirements, while 
Toolset Two clearly fails the third requirement, as it will melt with the heat, and may fail the second requirement if the 
open fire cannot be controlled. 

Table 1: Summary of Differentiating Characteristics of Technologies  
for Finding Answers on the Web: KW vs. QA 

Facets Web keyword searching Web question answering 
Input format Keywords Question in natural language 
Output format Snippets with keywords highlighted, 

links to the pages 
Snippets with the presumed answers 
highlighted, links to the pages 

Ordering of items By algorithm’s perception of the 
relevance 

By algorithm’s perception of the value 
to the user: avoiding redundancy and 
promoting more convincing snippets 

Treatment of input Bag of words: retrieved documents 
have to match the keywords 

Natural language question: Retrieved 
documents have to provide answers 

Combining results 
from different sources 

Can happen only accidentally if 
there is high variability in the 
snippets 

Intentionally supported. The snippets 
are enforced to be non-redundant to 
each other. 

For a task that requires building a list of items to answer a question, the applicable facets from the prior literature are 
the following: (1) The tool should find items related to the question. (2) The tool should present as many correct 
(excluding inaccurate and outdated) answers as possible. (3) The tool should present the items in a way that is 
effective to the user, which typically means the answers have to be (a) recognizable in the output (b) non-redundant 
(c) convincing. Those requirements are supported by prior empirical studies with QA, e.g., by Roussinov et. al. 
[2008]. 

Table 1 summarizes the main differences between the two technologies. In spite of those differentiating 
characteristics, it is evident that neither is universally superior to the other when no fusion is involved for the 
following reasons: (1) both tools can find the answers (QA explicitly by design while KW implicitly by frequent co-
occurrence of the answers with the questions words); (2) since a single source may exist for all the answers, there is 
no strong need to reduce redundancy and to promote diversity of answers; and (3) the perception of the input and 
output format is the same by the user. 

The situation changes significantly when the need for fusion is present as it is the case with list questions. When the 
tool does not provide the fusion of information, the user needs to manually search multiple sources and put together 
the disparate pieces. For example, compare the two outputs presented in Figures 1 and 2 showing the system 
responses to the question Which countries has Hugo Chavez visited? Since KW simply looks for the popular pages 
that frequently mention the words countries, visited, Hugo, Chavez, it, not surprisingly, chooses those that mention 
Venezuela, which happens to be wrong. Only one correct answer (Cuba) is mentioned by chance. On the contrary, 
since QA promotes diverse answers (by the algorithms detailed in Section 4), it correctly reports several different 
countries, including Cuba, Iran, Argentina, United States, and China. Thus, while KW mostly repeats the same (most 
popular) answers, QA avoids redundancy by noting what answers have been already presented so a more diverse 
set of answers is reported. In order to recognize which answers have been already reported, a system would need 
to identify the set of candidate answers and to perform triangulation (confirmation), the two important steps not 
present in KW but intrinsic parts of QA. Moreover, the triangulation in the case of fusion cannot be supported by the 
KW even implicitly since the candidate answers are not extracted and thus not differentiated from other words 
frequently co-occurring with the words of the question. 

Thus, from both algorithmic and user perspectives, QA should be a better fit for a task involving fusion, which is, of 
course, not surprising, because it was deliberately designed and built to accomplish the task. The above 
considerations also explain why the prior empirical studies could not find difference in performance between QA and 
KW: the tasks that were used by prior studies simply did not involve any fusion, thus QA was offering little additional 
benefit. 
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Figure 1. WebQA Output for a List Question That Requires Fusion 

 

 

Figure 2. Keyword (Google) Output for a List Question That Requires Fusion 
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III. THE RESEARCH PROTOTYPE 

Knowledge “Light” Versus Knowledge “Heavy” Systems 

Modern QA technologies rely on many components, including document retrieval, semantic analysis, syntactic 
parsing, and explanation generation. In order to answer such questions, a typical QA system would: (a) transform 
the user query into a form it can use to search for relevant documents (Web pages), (b) identify the relevant 
passages within the retrieved documents that may provide the answer to the question, and (c) identify the most 
promising candidate answers from the relevant passages. The QA systems are designed based on techniques from 
Natural Language Processing (NLP), Information Retrieval (IR), and Computational Linguistics (CL). For example, 
Falcon [Harabagiu et al., 2000], one of the most successful systems in TREC competitions, is based on a prebuilt 
hierarchy of dozens of semantic types of expected answers (person, place, profession, date, etc.), complete 
syntactic parsing of all potential answer sources, and automated theorem proving to validate the answers. Their 
work encompasses decades of elaborate linguistic modeling and manual resource building. 

Those “knowledge heavy” NLP-based approaches have a strong advantage: they can be applied to smaller 
collections (e.g., corporate repositories, collections of e-mails) and still provide good performance. However, none of 
the known top performing systems has been made publicly open to the other researches for follow-up investigations, 
most likely because of the expensive knowledge engineering required to build such systems and the related 
intellectual property issues. As a result, it is still not known what components of these systems are crucial for their 
success, and how well their approaches would perform outside of the TREC test sets or outside the proprietors’ 
laboratory. 

On the other hand, the algorithms behind many of the nonlinguistic (“knowledge light”) systems have been disclosed 
(e.g., Voorhees and Buckland, 2007) and are possible to replicate. In the standard tests, the performances of most 
of the redundancy/pattern-matching-based systems have been found comparable to each other [Voorhees and 
Buckland, 2007]. Their strengths/weaknesses with respect to specific question types was found to be similar. 
Knowledge light approaches typically reach 75 percent of the performance of the knowledge heavy approaches (as 
measured during TREC competitions), but their important advantage for empirical research is allowing replication. 

By using the publicly available and replicable technologies within our prototype, we have addressed one of the 
methodological challenges mentioned above in the Introduction section: the availability of the technology for testing. 

Prototype Description 

Foundations 

This section briefly overviews the “knowledge light” QA technology that is behind our prototype. The details can be 
found in prior work [Roussinov and Robles-Flores 2007; Roussinov et al. 2008]. We based the prototype on an 
existing QA system that is grounded in pattern matching and redundancy (e.g., Clarke et al., 2001). In terms of 
performance and algorithms, it is similar to others within the redundancy-based family of QA systems [Dumais et al., 
2002; Ravichandran and Hovy, 2002; Roussinov and Robles-Flores, 2007], which rely on constructing and sending 
several queries to a commercial Web search engines (e.g., Google in our case) and analyzing the returned snippets. 
The major advantage of such “knowledge light” approaches is that the underlying algorithms are publicly disclosed, 
fairly simple to implement, and independent of any elaborate linguistic resources such as ontologies of questions, 
transformation rules, parsers, etc. The other important advantage of such open domain Web question-answering 
system is that it uses the same documents (Web pages) as potential answer sources as the search engine on top of 
which it operates, which is, in our case, Google. This makes empirical comparison of the two tools (QA and KW) 
more meaningful, since they draw from the same knowledge sources. 

Although the implementation details vary, all the redundancy-based approaches take their roots in the automated 
learning (or manual construction) of the answer patterns. Although many variations of pattern language have been 
proposed, they are all essentially trying to capture the possible formulations of answers. For example, an answer to 
the question “What is the capital of China?” can be found in a sentence “The capital of China is Beijing,” which 
matches a pattern \Q is \A, where \Q is the target of the question (“The capital of China”) and \A = “Beijing” is the text 
that forms a candidate answer. \A, \Q, \T, \p (punctuation mark), \s (sentence beginning), \V (verb) and * (a wildcard 
that matches any words) are the only special symbols used in our pattern language. \T stands for optional semantic 
category of the expected answer, e.g., for the question “In which city is the Eiffel Tower located?” \T = “city.” 

Triangulation, a term which is widely used in intelligence and journalism, stands for confirming or disconfirming 
facts by using multiple sources. In order to employ the full power of triangulation, for each question (e.g., Who is the 
CEO of IBM?), each candidate answer has to be extracted from the sentences returned by answer services (e.g., 
Samuel Palmisano from the sentence Samuel Palmisano became the twelfth CEO of IBM), so that the answers can 
be compared with the other candidate answers (e.g., Sam Palmisano—a possible variation). 
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Finally, output sentences are re-ranked according to the expected number of correct answers contained, e.g. by a 
formula from Roussinov and Chau [2008]: 





S  c(i)

)(  score(S) ip  (1) 

where p(i) is the probability of each candidate answer c(i) in the sentence S to be correct, which is approximated by 
the score of the candidate answer after the triangulation step mentioned above. 

After receiving feedback from the preliminary user studies, we realized that this approach is not enough for the 
questions involving fusion where the algorithm needs to present several answers. The next section explains our 
novel solutions suggested for this challenge. 

Promoting Diversity: Novel Re-ranking Based on Reported Evidence 

This section presents our simple but novel algorithm promoting diversity in the reported answers. We introduce the 
notion of “sufficient reported evidence”: once a certain candidate answer has already appeared enough many times 
in the output, it should be excluded from formula (1) above. To quantify this “sufficiency,” we designed the following 
heuristic model. We evaluate the degree of evidence to which a given sentence supports a given candidate answer 
through linear mapping from the maximum possible lexical overlap between the question words and the words in the 
sentence into the [0,1] interval. For example, given the question “What countries have been visited by Hugo 
Chavez?” the sentence “Chavez likes Cuba” is estimated to provide only 12.5 percent support for the candidate 
answer “Cuba,” since there is only one word overlap “Chavez” out of maximum eight. The sentence “Hugo Chavez 
visited Mexico on his way to Cuba” provides 3/8 = 37.5 percent support for both candidate answers “Mexico” and 
“Cuba.” 

Each time when a new j-th sentence is added to the output, the probabilities (scores) associated with the candidate 
answers that are used in formula (1) are discounted by the following adjustment: p(i,j+1) = (1 – e) p(i,j), where p(i,j) 
is the (adjusted) probability of being correct after j-th sentence has been already reported. Before generating the 
snippets, p(i,0) is set to p(i) from the formula (1). After each snippet is reported, the remaining sentences are re-
ranked according to the algorithm described in the preceding section and modified accordingly: 





S  c(i)

),(  score(S) jip

   (2) 

In the example above, this results in discounting of the candidate answer “Venezuela” after the first sentence has 
been reported, so the sentences containing “Argentina” receive the highest rankings. Once they are reported, “Iraq” 
becomes the most probable, yielding later to “United States,” which in turn yields to “China.” While some of those 
answers are wrong, the majority of them are correct. This illustrates that the algorithm successfully combines the 
diversity and the likelihood of being correct and, as a result, reports more correct answers than the KW output 
shown in Figure 2 for comparison. 

IV. PROTOTYPE EVALUATION: OVERCOMING METHODOLOGICAL CHALLENGES 

TTF as a Theoretical Framework 

The review of the TTF literature suggested that its performance metrics are typically related to the concepts of 
effectiveness, efficiency, and user satisfaction. In general, effectiveness means that the user of the technology is 
able to successfully complete the task. Efficiency is a concept related to the way of being economical in terms of the 
use of resources to complete the task. User satisfaction is related to the perception of the user about the technology 
and how helpful it is perceived to be. The TTF literature presents different approaches, and in some cases it uses 
“utilization” as a proxy for performance. 

While studying QA involving fusion (e.g., list questions), we suggest measuring the user performance by three 
indicators: (a) mental workload, (b) user satisfaction, and (c) the recall. The last measure originates from the 
information retrieval literature [Salton and McGill, 1983] and refers to the ratio of the relevant responses to the total 
number of all possible relevant responses. While precision is also often measured in the information seeking studies, 
we believe that it is not necessary in the empirical investigation of QA when the participants are expected to verify 
their answers, thus they serve as the judges of the correctness at the same time. The recall (percent of all the 
correct items that are found) becomes the ultimate metric (outcome measure) of performance, and is simply referred 
to as performance below. 
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It is important to distinguish the user performance measures listed above from the system measures, e.g., a number 
of correct answers included in the output. Even if the system performs well, the user still needs to be able to take full 
advantage of that, which at least necessitates (a) being able to recognize the answers and (b) to be sufficiently 
convinced that they are indeed correct. This makes the outcome of an empirical study comparing QA vs. KW at least 
not trivial and may explain why no empirical superiority of QA has been demonstrated so far. 

The other metrics that we validated in the user study were the following: 

1. Mental effort. This variable measures perceived mental workload on the user performing the task. This is a 
self-reported measure through the exit questionnaire (the NASA-TLX instrument). We measure mental effort 
separately for each tool being used. 

2. User satisfaction. This is the perception of the user about the use of the technology and how it helps in 
finding information; therefore, an exit questionnaire was presented to the participants to measure 
satisfaction with each tool separately. The user satisfaction questions were adapted from Doll and 
Torkzadeh (1998). 

For a study involving information seeking tasks, TTF would also suggest proceeding through the following two 
phases, not necessarily involving the same participants: (1) Task Creation and (2) Task Execution. The next two 
sections provide the details. 

Task Creation 

As explained in the previous chapter, to test the involved technologies, we needed tasks involving fusion. We limited 
the situation to a fairly common scenario in which the user needs to find the answers to a list question, for which 
aggregating a number of items from different sources (fusion) is needed. Because studying QA empirically is a 
nascent area of research, there are no well-developed standard tasks available, so they had to be created for the 
experiment and, preferably, before the system is tuned, to avoid over-fitting the system for those specific tasks. We 
decided not to use the questions from past TREC competitions because (a) we discovered that only a few of them 
required fusion, and (b) they were already used extensively to test our (and similar) prototype(s) during their 
implementation and in prior studies. 

First, we identified and formalized the necessary characteristics for the tasks to be classified as fusion based on the 
literature discussed above. This resulted in the instructions that we gave to the “task creators,” which can be briefly 
summarized as the following: “Think of 10 simple (no longer than 20 words, and not involving logical structures such 
as negation, conjunction or disjunction) questions, each asking for a list of items. The items should be named 
entities (people, organizations, dates, numbers, etc.). You are not expected to find all the answers yourself but 
should expect the total number to be approximately between 10 and 30. The answers to the questions should not be 
easily found on a single page, such as those in Wikipedia or other online resources.” We provided positive and 
negative examples of questions with explanations. 

As “creators of questions,” we invited graduate students (master’s or Ph.D. level) or recent (<2 years) graduates. 
People with a variety of areas of expertise were intentionally included in order to solicit questions from different 
knowledge domains: urban planning, social justice, information systems, management, biology, engineering, 
computer science, and psychology. The request to contribute was sent to forty-two individuals and nineteen 
responded with questions (45.2 percent response rate). A total of 179 questions were collected. 

A brief inspection of the collected questions showed that the degrees of meeting the requirements set forth varied 
greatly and necessitated further cleaning of the set, which was performed by one of the coauthors of this article. We 
did not notice any significant ambiguity when deciding what questions fit the criteria that we gave to the contributors. 
The reasons for excluding questions were (in the order of being more common): (1) answers existing on a single 
Web page, e.g., all the answers for How many species of Tetraedron exist? in a single Wikipedia article, (2) too 
many answers existed, e.g., for How many types of wood were used in the construction of Colon’s ships? (3) 
expected answers not being named entities, e.g., What types of reptiles are confiscated annually at major airports. 

It’s worth emphasizing that no attempts to run the questions through a QA system were made at this stage. After the 
verification process, thirty-six questions remained. Thus, as a byproduct of our user study, we created a test set of 
questions, which can be reused in future experiments. For the user study, we randomly selected twenty-eight 
questions (4 x 7), as a convenient number to perform pseudo-random balanced allocation of the participants in the 
experiment. Those questions are listed in Table 2. 
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Table 2: Questions Used in the User Study 

Which countries has Governor Janet Napolitano visited? Which cities have St. John Boutique outlets? 
What companies control low earth orbit satellites? Which countries withdrew from OPEC? 
What are the locations of the manned lunar landings? What techniques exist to measure Fe isotopes? 
What fresh food products are exported from the Chilean 
Los Lagos region? 

What countries were members of the original 
League of Nations? 

What types of chickens are raised in the United 
Kingdom? 

Which actors are also authors? 

Who are the contemporary composers of the medieval 
composer Moniot d'Arras? 

Who are the first ladies of South America 
countries? 

Which towns in Germany were bombed in World War II? Which Nobel Prize winners were born in Latin 
America? 

Which baseball stadiums offer tacos? What types of reptiles are confiscated annually at 
major airports? 

What Latin America presidents were prosecuted for 
corruption? 

Which actors were taller than Leonardo DiCarpio in 
Titanic? 

What unique minerals were found in underground crystal 
mines in the past 20 years? 

Which countries launched military satellites? 

Which Florida cities have Opera Houses? With which African institutions has Arizona State 
University established agreements in the area of 
political sciences? 

Which public companies in the U.S. have existed for 
more than 150 years? 

What countries have Precambrian outcrops? 

Which soccer players scored more than 500 goals? Which biographers wrote biographies of Che 
Guevara? 

What Klingon vessels did Captain Kirk order the 
Enterprise to attack? 

Which capital cities were founded before Christ? 

The important lessons learned from this phase were the following: (1) it is possible to create a test set of questions 
with necessary characteristics of fusion. (2) It is reasonable to expect some amount of cleaning of the suggested 
questions; thus other participants not related to the study may need to be recruited for this purpose, with the 
instructions created in advance. 

Once the questions were selected, they have been processed by our Web QA prototype, so the answers would be 
stored in its cache. Otherwise, producing the answers during the user study would create unnecessary wait time. We 
also verified that the system was not only able to produce correct answers for most of the questions, but also 
produced two to three times as many correct answers on the first page compared with when the same question was 
entered verbatim to Google. This was not surprising since Google is not designed to answer list questions, and the 
capability to do so was found to be low in previous studies [Roussinov et al., 2008]. In comparison, we were not able 
to observe the same difference in the returned correct answers for the sample of questions not involving fusion, 
which we identified within the same original set of 179 questions, which supported our conjecture that the presence 
of fusion to warrant the use of QA is vital. 

To further investigate if the users could actually take advantage of the good answers given to them by the system, or 
if they could alternatively do as well instead of creating effective Google queries themselves, we proceeded to a user 
study described in the next section. 

V. TASK EXECUTION: A USER STUDY 

We involved a convenience sample of 120 undergraduate students taking an introductory Information Systems 
course in a business school, motivated by a small extra credit. 

The participants in the experiment had the following characteristics (information collected through an exit 
questionnaire): eighty-four male and fifty-five female (three did not respond). On average they have 2.13 years in 
college (fifty-four had one year of college, forty-four had two years, twenty-seven had three years, and fourteen 
reported more than three years of college). Regarding age, 134 participants reported their age between eighteen 
and thirty, while one reported below eighteen and six reported between thirty-one and fifty (one participant did not 
respond to this question). In the native language question, 123 reported being English-language native speakers 
and sixteen had other language as primary (one left the question blank). Regarding experience with search tools, 
113 participants reported a daily use of search tools, while twenty-four reported using them several times per week, 
and four participants said they use them around once per week or less (one participant did not respond). On an 
“expertise” scale from 1 to 5 (1 = expert and 5 = inexperienced), twenty-six participants considered themselves in 
level 1, eighty in level 2, and thirty-three in level 3, while two considered themselves in levels 4 or 5 (one participant 
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did not respond to the question). Regarding use of e-mail, 130 participants responded that they use e-mail every 
day, nine use it several times per week, and two use it around once per week (one participant did not respond) The 
questions about the participants’ use of the World Wide Web shows that 131 of them use it daily, nine several times 
per week, and two around once per week (one did not respond). 

Each participant in this phase was assigned six tasks to perform (find answers to questions), alternating the use of 
both technologies (QA or KW), and the seventh task where he/she could choose which technology to use. The 
participants completed exit questionnaires. Considering that each participant was given five minutes per task and 
performed seven tasks, with the overhead for the instructions and filling out the questionnaires, the study took 
approximately one hour, which in the past was suggested as a reasonable time frame for which it is possible to 
recruit volunteer subjects. 

Our instructions for using QA allowed switching to KW once all the system answers were checked. We decided not 
to block users’ access to KW search when they were instructed to use QA because (1) that would mimic a real-life 
scenario better since these days users have access to keyword search engine portals virtually anytime and (2) using 
only QA would unfairly constraint searching for the answers, since the users did not have any control over the output 
of the QA system, so they would not be able to find any answers if the output was not useful for some reason (e.g., 
the system misinterpreting the question, not processing it correctly, etc.). Thus, throughout the rest of this article, the 
QA tool actually stands for the combination of question answering and traditional keyword searching (KW). 

For this reason, it would seem intuitive to expect that the performance with QA should be at least as good as with 
KW, since the user approaching a task with QA always had an option to switch to KW. However, it is important to 
keep in mind, that the switching itself may take additional time and require cognitive effort. Indeed, the user still 
needs to sift through the output of the QA while trying to find any useful answers, and only after checking all of them 
or after giving up for some other reason, the user switches to KW. 

Even having a large number of users involved in our study, we expected our methodology to be further refined. 
Thus, we treated our investigation as simply a “user” or “pilot” study to learn important lessons rather than to conduct 
a formal experiment. 

Table 3 summarizes our hypotheses and the tests run. When the analysis was performed by subjects, the results 
happened to be opposite of what we expected: more users preferred KW, felt less cognitive load, and were more 
effective with it, than with QA. However, since the subjects used the same set of twenty-eight questions, it made 
sense to perform the analysis by questions as well, which showed that the hypothesized differences were not 
statistically significant; thus neither system can be judged by the experiment as uniformly better than the other: there 
was strong dependence on a particular question; thus a larger sample of question would be needed to support the 
claim that one system is better than the other. 

Table 3: Summary of Hypotheses 

Hypotheses Analysis 
H1: Utilization Proportions test 

H2a: Mental Effort Paired t-test 

H2b: User Satisfaction. Paired t-test 

H2c: Performance Repeated measures ANOVA 

Figure 3 below shows the mean scores obtained for each question, regardless of the technology used. The 
conclusion is that there may be an effect by the question number. This implies that some questions are more or less 
difficult than others. 

As Table 4 illustrates, for the same question, the average across-subjects score was statistically significantly higher 
when the subjects used the technology of their choice (while working on task 7) rather than when they were asked to 
use a specific one. This leads to several important conclusions: (1) After gaining some experience with using both 
technologies and with the tasks in the experiment, the participants were able to correctly judge which technology is 
better suited to answer a specific question. (2) Still a substantial proportion of participants (35 percent) chose to use 
QA, which shows it as a promising new technology. (3) By making their choice, the participants were able to improve 
their performance. We believe all of these findings are encouraging from the point of view of investing in the new 
emerging QA technology. 
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Figure 3. Average Score for Each Question Regardless of Technology Used 

 

Table 4: Mean Performance Scores of Participants Based on their Choice of 
Technology. The Differences Are Statistically Significant (alpha = 0.05). 

 Web keyword searching Web question answering 

Performance when assigned 0.11812385 0.09187134 

Performance when chosen 0.13405913 0.11031367 

While the participants in our preliminary studies and the questions creators were mostly graduate students, the 
participants in this phase were undergraduates. This may explain why a much higher than expected proportion of 
erroneous answers were reported (50 percent vs. 5 percent). However, follow-up interviews with some of the users 
suggested that, when verifying the answers was adequately emphasized, the users were able to easily discard 
erroneous answers; thus our conjecture on the possibility of using recall as the primary performance metric was still 
supported. In addition to clarification and training in verifying the answers, future empirical designs may also involve 
penalties for reporting wrong answers. The additional explanation of this difference may be the time pressure that 
the users experienced. Since the experiment instructions expected not only to find the answers, but also to verify the 
correctness of them, more time was needed for each task. The fit between the technology and the task was 
decreased. Future empirical designs should allow sufficient time and motivation for the users to simulate the real-life 
tasks when the users have vested interest in the correctness of the reported answers. This would provide a better fit 
between the technology and the task. 

The number of correct answers returned by the participants using the QA system correlated positively with the 
number of answers returned by the system. This highlights the (rather expected) importance of the system to do its 
best in interpreting the question and reporting as many correct answers as possible. Some questions, especially 
those requiring understanding the subtleties of human language, happened to be more difficult. The ANOVA results 
on the performance showed large interaction effect in which the question number has an effect on the scores 
obtained. The variability of user scores by questions suggests that for a full-scale experiment a substantially larger 
number of questions is needed. 

The tasks (questions) happened to be difficult for the participants with using either system. As the post-
questionnaires indicated, the participants were overall unsatisfied with their performance and often felt frustrated 
with their overall ability to accomplish the assigned tasks. The proportion of attempts (task/participant pairs) in which 
any answers were reported was 52 percent, while the proportion of attempts resulting in any correct answers was 
only 31 percent. Using QA was new for the participants and demanded even more effort simply to get familiar with it 
and follow the experiment instructions. The more familiar tool (Google) caused less frustration and imposed smaller 
mental load. 
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It is interesting to note that the QA system output contained several more correct answers than what the participants 
actually found. It seems as if the participants did not “see” these answers in the output. Table 5 provides more 
details on this. It is possible that, due to time constraints in the experiment, the participants were not able to spend 
enough time to review the output carefully and to follow the links when needed. 

No major issues were observed regarding the lack of understanding of or not following the instructions. We found 
the technology involved was stable enough and did not experience any technical glitches during the user study. 

Table 5: Comparing the Number of Items Found for Each Question 
(Task) and the Number of Items in the WebQA Output 

Question Items found in the 
WebQA output 

Average number of items found by 
participants assigned to QA 

201 3 1.26666667 
202 8 1 
203 0 1.5 
205 3 0.13333333 
206 6 0.66666667 
207 2 1.76470588 
208 5 1 
209 1 1.4117647 
210 7 2.52941176 
211 2 1.85714286 
212 7 0.46153846 
213 5 3 
214 7 2.8 
215 1 1.4 
216 6 2.67 
218 0 0.2 
219 12 5.5 
222 1 1.5 
223 11 1.6 
224 8 2.8 
225 3 2.3 
226 3 0.1 
227 0 0 
228 3 1.8 

V. CONCLUSIONS 

By using Task Technology Fit (TTF) theory, we have been able to explain why online question-answering (QA) 
technology has not been so far demonstrated to be superior to traditional keyword search (KW). We have suggested 
that, when the task does not require fusion, QA offers little benefit in addition to KW. However, when the fusion is 
expected, as in the case of finding answers to list questions, QA could have an impact on the results. It may be 
possible that the most popular questions do not require fusion, since somebody has already combined all the 
answers for them in a single source. Thus, QA may be a more suitable technology for less “main-stream” questions. 

We have also demonstrated how Task Technology Fit theory can successfully guide designing the methodology to 
test this impact and have validated our methodology through a user study, which provided a number of valuable 
lessons for a future full-scale experiment. 

We have described our novel prototype (a new system capable of answering list questions such as What companies 
own low orbit satellites?) specially designed and implemented for an evaluation experiment. Our prototype illustrates 
how publicly available “knowledge-light” building blocks can be used to overcome the limitations of the “knowledge-
heavy” proprietary technologies and to allow replication outside the proprietors’ laboratory. 

A number of limitations were also discussed throughout our article, and we are going to address them in future 
research when preparing a larger scale laboratory experiment or a field study. The most important lesson learned is 
that more training in the use of QA tool is vital. Specifically, the user needs to learn how to quickly glance through 
the answers presented by the system, how to recognize and verify the most promising ones, how to verify the 
correctness of the answers found, and when to consider the task completed. 
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When the users had a choice of technology (on their last question), they scored better on average than the other 
users who answered the same question when being constrained to use a specific tool. This indicates that the users 
accumulated enough experience during the study to properly judge which tool is more appropriate for them to use on 
the given question and to use it effectively. 

Our research makes an impact in the following ways: 

1. It contributes to the theory by exploring the applicability of TTF to open domain question answering. 

2. It presents and tests the methodology to evaluate information seeking tasks. 

3. Our study provides insights to managers on whether it is worth investing in QA technologies and training the 
personnel, which, as we argue, greatly depends on the amount of fusion within the information-seeking 
tasks that the company encounters. 

We certainly believe that this study will contribute to the managerial awareness of the capabilities and limitations of 
the modern question-answering technology within the overall information supply chain and the appreciation of the 
challenges of its methodological evaluation. 
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