Ingeniería en Gestión Ambiental
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3738
Examinar
Ítem Acceso Abierto Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning(Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony YeltsinEste estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.Ítem Restringido Diseño de un plan de negocios sostenible para la implementación de una planta de valorización de residuos inorgánicos (plástico PET) en la ciudad de Cerro de Pasco – 2024(Universidad ESAN, 2024) Sotelo Geronimo, Silvia Geraldine VictoriaEl presente trabajo de investigación tiene como objetivo diseñar un plan de negocios sostenible para la implementación de una planta de valorización de residuos inorgánicos (plástico PET) en la ciudad de Cerro de Pasco, Perú. La propuesta no solo busca contribuir a la reducción de residuos plásticos, y pretende generar un impacto positivo en los ámbitos económico, social y ambiental de la región. Los resultados obtenidos demuestran la viabilidad técnica, financiera y legal del proyecto, evidenciando que la planta puede operar de manera eficiente y rentable en un horizonte de cinco años, generando empleos y diversificando la economía local, tradicionalmente dependiente de la minería. En el Capítulo I se presenta el planteamiento del problema y se destaca la necesidad de soluciones sostenibles que permitan la valorización de residuos como el plástico PET. En el Capítulo II se desarrollan las bases teóricas, abarcando conceptos como economía circular y sostenibilidad. El Capítulo III detalla el entorno empresarial, incluyendo un análisis FODA que identifica las oportunidades y riesgos del proyecto. El Capítulo IV describe la metodología utilizada, combinando enfoques cuantitativos y cualitativos, mientras que el Capítulo V se enfoca en el desarrollo de la solución, confirmando la viabilidad del proyecto.Ítem Acceso Abierto Estudio de factibilidad de comercialización e implementación de sistemas fotovoltaicos autónomos en las zonas rurales de Junín(Universidad ESAN, 2024) Caicedo Cabrera, Andres Jose; Chacon Aliaga, Favio Hector; Rebaza Anchante, Israel GersonActualmente. el mundo está viviendo una transición energética, lo cual genera que la composición de la matriz energética global cambie sus fuentes de generación de energía con la finalidad de disminuir el impacto ambiental y mitigar los gases de efecto invernadero que afectan al planeta. En ese sentido, la generación de energía eléctrica a través de sistema fotovoltaicos se ha convertido en una opción viable, puesto que, con los avances tecnológicos y el desarrollo de equipos más eficientes, es posible aprovechar de manera eficiente la energía solar. En este proyecto se propone la implementación de un negocio dedicado a la comercialización e implementación de sistemas fotovoltaicos autónomos que abastecerá de energía a las viviendas en zonas rurales en la región de Junín, Perú. Por ello, se abordarán temas como, la presentación del modelo convencional actual y la propuesta de valor que ofrecemos como una solución a la falta de energía eléctrica en esas zonas. Este proyecto brindara los conocimientos básicos acerca de que es la energía solar, como funcionan los sistemas fotovoltaicos autónomos, también brindara un análisis económico, técnico, ambiental y social que evaluará si el proyecto planteado en el trabajo de investigación es factible y sostenible a través del tiempo, dentro de las zonas rurales del país.Ítem Acceso Abierto Evaluación de la comercialización del champú sólido “Blossom Bloom” como contribución a un modelo de negocio sostenible en Lima Metropolitana(Universidad ESAN, 2024) Muñoz Jimenez, Alexa Ximena; Samame Lucas, Marianne Alexandra; Vasquez Yance, Anderson Andre; Vila Puente, Ronald BrathsoLa presente investigación de enfoque cuantitativo, diseño experimental y alcance descriptivo se realizó con el propósito de elaborar una propuesta de comercialización de champú sólido que contribuya a la creación de un modelo de negocio sostenible en Lima Metropolitana. Teniendo como primer objetivo evaluar la formulación del champú sólido en la aplicación de los 12 principios de la química verde que contribuya a la creación de un producto sostenible. Para el segundo objetivo se evaluaron tres formulaciones de champú sólido identificando la formulación que utiliza más materia prima con el fin de maximizar el beneficio económico en la comunidad de Huaral. Por último, se evaluó la sostenibilidad financiera del champú sólido. Los resultados demuestran que la comercialización del champú sólido contribuirá a un modelo de negocio sostenible. En la formulación del producto se cumple con al menos el 90% de los principios de la química verde garantizando la sostenibilidad ambiental. Además, se identificó la formulación de champú sólido que utiliza la mayor cantidad de materia prima. Por último, se demostró que el modelo de negocio es financieramente sostenible al obtener el VAN y la TIR positivos.Ítem Restringido Evaluación de la implementación de Customer Relationship Management (CRM) y su impacto en la optimización de la gestión comercial del área de Educación Continua de la Instituto Carrión(Universidad ESAN, 2024) Arana Torpoco, Jean Fred; Cosio Chavez, Karen Valeria; Gonzalez Riva, Christian Isaias; Paredes Solano, Angela Karin; Polar Velasquez, Diego AlonsoEn un entorno educativo cada vez más dinámico, es crucial que las instituciones educativas tengan herramientas tecnológicas que les permitan mantener una gestión ágil y personalizada de las relaciones con los clientes para desarrollar una ventaja competitiva en el mercado. El presente trabajo de investigación busca evaluar la efectividad del sistema de gestión de relación con los clientes (CRM) que fue implementado en el Instituto Carrión en julio del 2022 y su impacto en la gestión comercial del Área de Educación Continua. Para ello se evaluó el impacto del CRM en la optimización de los tiempos de procesos, los niveles de ventas y la influencia en las estrategias comerciales, comparando los valores obtenidos antes y después de la implementación. Se identificó que el CRM generó en el Instituto Carrión un impacto positivo en los niveles de ventas (13.4% más), mejora en los tiempos de los procesos comerciales (8.20% menos) y la efectividad de las estrategias comerciales (16.13% más). Este trabajo aporta como un antecedente importante en el campo del sector educativo al proporcionar un caso práctico de tecnología aplicada para mejorar la gestión comercial en instituciones de educación superior.Ítem Acceso Abierto Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico(Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, SantiagoLa presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.Ítem Embargo Implementación de un modelo de Machine Learning para la predicción de la demanda de muebles de sala en la empresa Mallhogar.com(Universidad ESAN, 2023) Chipana De La Cruz, David Ismael; Chugnas Sebastian, Analy Sandy; Chupillón Bautista, Yarelis Nicole; Guzmán Ramos, Pedro Jesús; Huancaya Rivas, Hasdaly AnjelyLa empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción, gestionar sus inventarios y agilizar la distribución de productos terminados. Para lograrlo se recopiló información de datos históricos de venta del periodo 2020-2023, se aplicó modelos de Machine Learning, en cinco tipos de muebles de sala. Los modelos de predicción que se emplearon fueron Regresión Lineal, CatBoost, XGBoost y LightGBM. Los resultados fueron evaluados comparando métricas como el Factor de determinación, Error Cuadrático Medio y Raíz del Error Cuadrático Medio, se analizó cómo el modelo se ajusta a los datos de entrenamiento con sus posibles limitaciones. Los experimentos realizados mostraron que los modelos LightGBM y XGBoost tuvieron mejores resultados con una ligera superioridad en comparación a los otros modelos, lo cual se vio reflejado en todos los modelos de muebles analizados, al final se obtuvo la predicción de muebles a vender para los meses de diciembre del 2023, enero del 2024 y febrero del 2024.Ítem Acceso Abierto Mejora del proceso de disposición de productos observados en el área de Aseguramiento de Calidad de una empresa PET usando técnicas de machine learning(Universidad ESAN, 2022) Ore Vargas, Jorge Humberto; Pinedo Chávez, Luis Alonso; Ramírez Núñez, Karen Andrea; Sullón Cabello, Claudia Noelia; Villanueva Méndez, Martín JesúsLa industria de empaques rígidos es un sector altamente competitivo en temas de calidad y precio en el Perú y el mundo. Es por ello, que se requiere que las empresas optimicen el uso de sus recursos para poder ofrecer lo que el mercado demanda. El presente trabajo plantea mejorar el proceso de disposición de productos observados en el área de Aseguramiento de Calidad a través de un modelo predictivo, resultante de la aplicación de técnicas de machine learning y así disminuir los tiempos que actualmente se emplean en este proceso. Estas técnicas son K-NN (k-Nearest Neighbors), Máquinas de soporte vectorial (SVM), Naive Bayes y Árbol de decisiones. Para su entrenamiento se usó data histórica de los años 2021 y 2022 la cual fue tratada y definida en conjunto con los especialistas. Como resultado de la evaluación del Accuracy de cada modelo, se pudo concluir que el más preciso es el Árbol de decisiones, la cual podrá ser aplicada a futuro en la empresa para contribuir con la mejora del proceso.Ítem Acceso Abierto Metodología de Valoración Contingente de ruido vehicular mediante Machine Learning: caso del bypass del Óvalo Monitor Huáscar ubicado en Santiago de Surco y La Molina(Universidad ESAN, 2024) Cama Montesinos, Andrea Alessandra; Rivera Bueno, Jose Pablo; Salazar Sanchez, Leslie Alexandra; Sandoval Alcala, Jean Pierre Andre; Soria Asin, Alejandra MarcelaEl estudio examina el impacto negativo del tránsito en la calidad de vida de la población en los distritos de Santiago de Surco y La Molina, en particular en relación con la contaminación por ruido producida por el Bypass del Óvalo Monitor Huáscar. Se propone el uso de la inteligencia artificial (Machine Learning) como una herramienta innovadora para predecir la disposición de pago (DAP) de la población para reducir el ruido del tránsito. El estudio se centra en crear un modelo de valoración contingente que se combine con algoritmos de aprendizaje automático para hacer predicciones sobre la DAP de la población en varios escenarios. Los hallazgos de esta investigación podrían ayudar a tomar decisiones informadas para mejorar la planificación urbana y la gestión del tránsito con el objetivo de reducir los efectos negativos del ruido del tránsito.Ítem Acceso Abierto Plan de negocio para una plataforma movil que conecta a usuarios en Lima Metropolitana que buscan ofertas de comida con establecimientos dispuestos a vender sus excedentes alimentarios en buen estado(Universidad ESAN, 2024) Del Castillo Zevallos, Nicolas Ruben; Portal Obregon, Fernando; Torres Caceres, CarolinaEl derroche de alimentos se ha convertido en un problema crítico a nivel global, afectando la seguridad alimentaria, el medio ambiente y la economía. La FAO estima que un tercio de los alimentos producidos en el mundo, es decir, alrededor de 1.300 millones de toneladas anuales, se desperdician. En Perú, especialmente en Lima Metropolitana, los restaurantes enfrentan retos significativos debido a este problema, ya que el auge de la gastronomía incrementa los desechos alimenticios. Esta propuesta sugiere desarrollar una aplicación móvil que vincule a los establecimientos con alimentos no vendidos con consumidores dispuestos a comprarlos a precios reducidos. La app permitirá a los negocios listar productos que no se vendieron, ofreciendo descuentos atractivos, y dará a los usuarios acceso a una variedad de alimentos frescos que de otro modo se tirarían. Los usuarios podrán explorar opciones cercanas, seleccionar lo que desean y recogerlo en los locales. La implementación de esta herramienta también fomentará la conciencia sobre la importancia de disminuir el desperdicio de alimentos.Ítem Acceso Abierto Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito(Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego AlfredoDiferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.Ítem Acceso Abierto Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning(Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria RosaliaDiversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).Ítem Restringido Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C(Universidad ESAN, 2022) Trujillo Grados, Alexandra Cecil; Meza Arismendis, Carmen Rosa; Calero Lazaro, Darwin Rubens; Huaman Avellaneda, Grecia Patricia; Palma Abanto, Katherine VioletaUn suceso fortuito como la pandemia genera retrasos importantes y costos logísticos adicionales, este evento termina evidenciando la mala planificación en la logística de las empresas. El presente trabajo busca complementar los escasos estudios enfocados en las variables que puedan afectar al tiempo de tránsito para el desarrollo de una mejor planificación organizacional. El objetivo de esta investigación es la predicción de tiempos de tránsito y determinación de entrega a tiempo en los embarques marítimos, a través del uso de 4 algoritmos del aprendizaje supervisado de Machine Learning. Para la predicción de tiempos de tránsito, se obtuvo un error absoluto medio (MAE) de 8.58 con un coeficiente de determinación (R²) de 0.3190 en el algoritmo de regresión lineal, obteniendo como variable más influyente “puerto de destino”, y en la determinación de entrega a tiempo se halló que el algoritmo KNN vecinos más cercanos genera el mejor pronóstico en comparación de la regresión logística, SVC y Naive Bayes, con un 67,38% de precisión. El uso de estas técnicas sienta una base para futuros estudios comparativos de los algoritmos de Machine Learning en el pronóstico de tiempos de tránsito en la logística internacional.Ítem Acceso Abierto Propuesta de mejora en el área de producción para aumentar la productividad en Intraplast E.I.R.L. aplicando manufactura esbelta(Universidad ESAN, 2024) Campos Gutarra, Vania Brigitte; Ore Ichpas, Nayely Mayli; Quezada Castellanos, Alexis Alfredo; Rios Blanco, Felix Andres; Rodriguez Yumpo, Brigitte TamikoLa empresa Intraplast E.I.R.L. busca mejorar su posicionamiento en el mercado local a través del incremento en la calidad de sus productos y cumplimiento en el tiempo de entrega a sus clientes. La investigación desarrollada posee como objetivo diagnosticar la situación actual de la empresa; y a través de herramientas de manufactura esbelta, que fueron evaluadas por medio de criterios como factibilidad, costo/ beneficio, impacto y tiempo de implementación, se propone la estandarización de procesos a través del estudio de tiempos, Value Stream Map, mejora del espacio de trabajo a aplicando 5S’s y aplicación de método de mejora continua a través del Ciclo de Deming. Para la simulación, se empleará el software Arena Simulation a fin de visualizar el flujo de proceso, ingresando cantidades y tiempos de producción. Los datos recopilados para desarrollar las propuestas corresponden desde el año 2020 al 2023. Como resultados de la simulación, se obtiene una mejora en indicadores como productividad, tasa de productos defectuosos, tiempo de ciclo, cumplimiento de plazos, tasa de producción y de devoluciones.Ítem Restringido Propuesta de mejora en la cadena de suministro de la empresa Colpex International SAC utilizando el arca de valor compartido para un impacto sostenible(Universidad ESAN, 2024) Moran Galvez, Joseph; Reyes Angeles, Elizabeth Cristina; Zarate Chavez, Jose CarlosEste trabajo busca mejorar la cadena de suministro de Colpex International SAC, utilizando el Arca de Valor Compartido y el Protocolo GHG. A través de la evaluación de la huella de carbono corporativa 2023, diagnosticada en la plataforma Huella de Carbono Perú, y un análisis exhaustivo de la cadena de suministro actual, se identifican oportunidades para reducir emisiones de gases de efecto invernadero (GEI). La cadena de suministro consta de cinco etapas: proveedores, logística de entrada, clientes, logística de salida y empresas navieras. En cada una de estas etapas, se analizaron las propuestas de valor para sugerir mejoras orientadas hacia la sostenibilidad. Las propuestas se enfocan en optimizar los recursos y reducir el impacto ambiental, alineando las operaciones con los objetivos de sostenibilidad de la empresa.Ítem Acceso Abierto Propuesta de mejora en la gestión de la calidad educativa utilizando herramientas de Total Quality Management para incrementar la satisfacción de los estudiantes y padres de familia de una Institución Educativa Privada(Universidad ESAN, 2024) Centeno Hurtado, Diana; Insil Guevara, Robert Christian Andrei; Valer Torres, Lizbeth Katy; Zavala Medrano, Dayeli YesseniaLa investigación se centra en la optimización de la gestión de la calidad educativa en la Institución Educativa Privada Daniel Goleman, abordando los importantes desafíos que enfrentan numerosas instituciones dentro del sector educativo. Los principales problemas específicos son la falta de control del contenido educativo y la ineficiente comunicación con las partes interesadas internas y externas. Estos elementos han afectado negativamente a los niveles de satisfacción de los estudiantes y los padres, así como en la retención de alumnos. Para abordar esta problemática se emplearon estrategias como la gestión de calidad total (TQM)1 mediante la herramienta PHVA2; se empleó la matriz VESTER, el diagrama de Pareto y diagrama de Ishikawa como herramientas de diagnóstico. La importancia de este trabajo radica en su capacidad para mejorar la gestión de la calidad educativa. La ejecución de estas soluciones podría influir significativamente en la satisfacción en los estudiantes y los padres de familia, mejorar las tasas de retención y, en general, contribuir a reforzar el servicio educativo, especialmente en un entorno en el que la calidad es un factor crucial para el éxito y la sostenibilidad de las instituciones educativas.Ítem Acceso Abierto Propuesta de optimización del flujo de información en la cadena de suministros de una empresa minera para la mejora de la efectividad en el proceso de movilización de personal mediante el uso de Lean Information Management(Universidad ESAN, 2022) Curi Reyes, Alexander; Becerra Bisso, Jose Salvador; Ramos Moscoso, Angelica Maria; Valladolid Paredes, Oscar Enrique; Vilchez Roman, Alexandra EstefaniaEl presente trabajo está enfocado en proponer optimización del flujo de información por medio de la identificación de desperdicios usando Lean Information Management. El Lean Information Management describe tanto una metodología enfocada en la identificación de desperdicios dentro de los flujos de información de los procesos de la organización como la posibilidad de reducir los tiempos de entrega y mejorar el procesamiento de la información. De esta manera, en el trabajo se evidencia cómo esta filosofía es pertinente tanto para contingencias que demanden procesamiento y tratado de información en contextos como los recientes de pandemia o en cualquiera en el que se halle una empresa en un ambiente de crecientes cambios y exigencias burocráticas. En ese sentido, la presente investigación tiene como objetivo corregir las deficiencias del flujo de información que generan sobre costos y tiempos de entrega no óptimos en el proceso de movilización de personal de una empresa minera. Y así, proporcionar una solución que ayude a mejorar la disponibilidad de información en el momento, estandarizar la elaboración y/o tratamiento de información y entregables con la finalidad de reducir los tiempos de espera y minimizar sobre procesos, duplicidad documentaria y asegurar la disponibilidad de información.Ítem Embargo Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la estrategia de ventas de productos de bebidas en el departamento de Ica(Universidad ESAN, 2023) Alikhan Trujillo, Kledy Fiorella; Aspiazu Neyra, Luis Eduardo; Auccapiña Guillen, Juan Abner; Ayna Benegas, Irene; Cardenas Pijo, Melisa ConsueloLa investigación se centra en el mercado de bebidas en el departamento de Ica, con el objetivo de automatizar la segmentación de clientes y, por consiguiente, mejorar las estrategias comerciales de ventas. Al implementar las fases de la metodología, las primeras etapas se dedicarán al procesamiento y tratamiento riguroso de los datos, preparando así el terreno para la construcción del modelo en la fase subsiguiente. Se emplearán técnicas de aprendizaje no supervisado de Machine Learning, como K-Means, K-Medoids, Agrupación Jerárquica, DBSCAN y HDBSCAN, con parámetros óptimos. En las últimas fases, se realizarán las agrupaciones de perfiles de tipo clúster basándose en un análisis detenido de la información recopilada y las variables pertinentes. El resultado será un reporte consolidado que proporcionará una visión detallada por cada perfil de cliente. Con esta información clave el gestor comercial de ventas podrá tomar decisiones comerciales estratégicas sobre ventas. De forma complementaria, se realizará una validación con un experto del rubro para verificar el tipo de clúster adecuado como candidato óptimo de la automatización de la segmentación de clientes.Ítem Acceso Abierto Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la experiencia de compra mediante un sistema de recomendación de productos de Tottus(Universidad ESAN, 2022) Atencio Manyari, Stefany Anyela; De la Rosa Flores, Harold; Hilario Maravi, Sayuri; Navarro Huarcaya, Margareth; Rosas Vivanco, Dianaluz MilagrosActualmente, el constante cambio en los factores externos como la tecnología, el mercado, y ahora la pandemia global están obligando a las empresas del sector retail a buscar diferentes estrategias de venta para mejorar la experiencia de compra de sus clientes y así obtener mejores beneficios. Por ello, este trabajo busca segmentar a los clientes a través de la aplicación de técnicas de Machine Learning para crear un sistema de recomendación de productos personalizados de acuerdo con las características a la cual pertenece cada cliente y así mejorar la experiencia de compra agilizando y facilitando el proceso desde el aplicativo móvil de la empresa. La propuesta de segmentación se realizó aplicando para el preprocesamiento de los datos el método estadístico de PCA y se modeló mediante tres técnicas de aprendizaje no supervisado: K-means, K-medoids y Clustering Jerárquico. Estas técnicas se evaluaron de forma teórica considerando el método del codo y el dendograma los cuales resultaron en K grupos óptimos. Finalmente, para validarlo de forma práctica, se solicitó la evaluación de un experto de la empresa quien mediante una entrevista comparó los resultados de las técnicas y escogió a K-medoids como la segmentación más adecuada para el negocio.Ítem Acceso Abierto Sistema de Gestión de Calidad y la influencia en la productividad para la ejecución de proyectos en la empresa H&O S.A.,2024(Universidad ESAN, 2024) Asian Ramirez, Silvia Laritza; Medina Tejeda, Geily Mireski; Vicente Canales, Luis NoeEste estudio analiza la influencia de un Sistema de Gestión de Calidad (SGC), basado en la norma ISO 9001:2015, en la productividad de la empresa H&O S.A para agosto y diciembre de 2024. Se realizó una investigación cuantitativa, descriptiva-correlacional, con un diseño no experimental y transversal. Se aplicó una encuesta a 20 trabajadores para evaluar las dimensiones de Planificación, Enfoque al cliente y Gestión de procesos del SGC, y su relación con la eficacia como dimensión de productividad. El análisis de regresión jerárquica reveló que el enfoque al cliente es el componente del SGC con mayor impacto en la eficacia para la ejecución de proyectos. Aunque la planificación y la gestión de procesos no mostraron una influencia significativa en la productividad dentro del contexto de este estudio, sigue siendo un componente clave del SGC. Los resultados demuestran que la implementación del SGC, considerando estas dimensiones como un constructo general, si influye de manera significativa en la productividad de H & O S.A. Por lo que, se recomienda a la empresa fortalecer aún más el enfoque al cliente, y revisar las estrategias de planificación y gestión de procesos para optimizar su SGC y, en consecuencia, su productividad.