Ingeniería de Tecnologías de Información y Sistemas

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3737

Examinar

Resultados de la búsqueda

Mostrando 1 - 5 de 5
  • Miniatura
    ÍtemAcceso Abierto
    Desarrollo de algoritmo de recomendación de SKU para los clientes de Alicorp que cuentan con un canal de atención digital usando técnicas de machine learning
    (Universidad ESAN, 2024) Espinoza Sutta, Milton; Limachi Pampamallco, Ana Isabel; Melo Locumber, Noe; Rodriguez Otiniano, Junior Ricardo; Valencia Cañote, Sebastian
    Saber qué es lo que quiere el cliente es uno de los retos más grandes que afrontan las empresas en la actualidad. En cuanto al uso de tecnología, las nuevas tendencias que aplican soluciones cuyo objetivo es mejorar, de manera incremental, la capacidad de poder recomendar productos o servicios de manera más exacta. No obstante, para identificar lo que desean los clientes, se necesita una base histórica que nos permita comprender sus necesidades y preferencias. Por ello, este trabajo de investigación se enfoca en el desarrollo de un algoritmo de recomendación que, a través del procesamiento de datos, pueda recomendar productos según el perfil del cliente. La investigación utiliza datos de Alicorp, una empresa peruana líder en consumo masivo, con dos millones de transacciones de ventas de clientes como panaderías, restaurantes y bodegas. Se aplicaron técnicas basadas en reglas como RFM y algoritmos de machine learning como Kmeans, LGBM Classifier y LGBM Ranker en la etapa de modelamiento. Para definir el mejor algoritmo se utilizó una medida de recall promedio de clientes de los productos recomendados. La familia de algoritmos LGBM demostró una precisión superior, destacando el LGBM Ranker que logró un impresionante recall de 0.8950.
  • Miniatura
    ÍtemAcceso Abierto
    Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
    (Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego Alfredo
    Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
  • Miniatura
    ÍtemAcceso Abierto
    Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico
    (Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, Santiago
    La presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.
  • Miniatura
    ÍtemAcceso Abierto
    Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning
    (Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony Yeltsin
    Este estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para determinar la producción de cultivos y personal requerido en las campañas de cosecha de la empresa Fundos Rejas SAC
    (Universidad ESAN, 2022) Briceño Rodríguez, Rafael Isaac; Celedonio Rojas, Marco Antonio; Crisóstomo Fernández, Walter Javier; Medrano Pelaez, Jose Luis; Salas Castillo, Patricia Elizabeth
    Diferentes empresas están utilizando técnicas de Machine Learning para analizar sus conjuntos de datos con la finalidad de encontrar comportamientos y patrones que les permitan crear modelos matemáticos predictivos, que a su vez pueden predecir diferentes variables de salida para determinar la producción y la cantidad de personal requerido para los cultivos de palta, arándano y mandarina. En el presente estudio, se utilizó una base de datos que comprende los años de campañas de cosecha (2019 a 2022). Para ello, la metodología CRISP-DM para obtener un mejor alineamiento en la etapa de desarrollo. Se utilizaron técnicas de aprendizaje supervisado entre ellas Regresión lineal Múltiple, Árbol de Regresión y Vectores de Soporte de Regresión, para medir el modelo que tiene mejor desempeño se utilizaron las métricas como el R2 y RMSE. Dentro de los resultados obtenidos, se obtuvo que, para determinar la producción del cultivo de palta, la mejor técnica fue la de Regresión Lineal Múltiple y para los cultivos de arándano y mandarina fue el Árbol de Regresión, por otro lado, para determinar la cantidad de trabajadores para el cultivo de palta el mejor modelo fue Árbol de Regresión y para los cultivos de mandarina y arándano fue el SVR.