Ingeniería de Tecnologías de Información y Sistemas
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3737
Examinar
3 resultados
Resultados de la búsqueda
Ítem Acceso Abierto Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning(Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony YeltsinEste estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.Ítem Acceso Abierto Técnicas de Machine Learning para la clasificación automática de clientes en una empresa de seguros(Universidad ESAN, 2021) Asencio Diaz, Luz de los Angeles Manuela; Chiang Cornejo, Ricardo Hernan; Crisóstomo Fernández, Fernanda Lucía; Hernández Quiroz, Gisela Vanesa; Lajo Aurazo, Almendra SofiaMachine Learning y los modelos matemáticos en los que se basa para poder identificar patrones y dar una estimación basada en data histórica son usados cada vez más en diferentes industrias para procesar información que antes se consideraba masiva y por ende difícil de relacionar de manera certera por métodos tradicionales. Con la inclusión de las técnicas de como regresión logística y K-NN, hoy en día es posible formular y proponer un modelo de predicción de aprendizaje supervisado que se ajuste a los requerimientos de clasificación de una empresa. Esta investigación propone la aplicación de las mencionadas técnicas para la elaboración de modelos predictivos de clasificación de tipos de asegurados para una determinada empresa en la industria aseguradora de vehículos automóviles; usando como base de datos los registros históricos recopilados del año 2019.Ítem Acceso Abierto Propuesta de integración vertical para mejorar el desempeño medioambiental de la cadena de suministro de una empresa nacional de fabricación de artículos plásticos mediante la incorporación de la fabricación aditiva(Universidad ESAN, 2021) Atanacio Gonzales, Oscar Renato; Mejía Suárez, Carol Janeth; Rodriguez Terán, Carlos Enrique; Salazar Lizarraga, Jose Eduardo; Villanueva Arévalo, Karla XimenaLa presente investigación tiene como objetivo presentar una propuesta descriptiva de implementación de una estrategia de Integración Vertical para la mejora del desempeño medioambiental de la cadena de suministro de una empresa ubicada en Lima dedicada a la fabricación de artículos plásticos por moldeo por inyección. Como herramienta se explora la Fabricación Aditiva para la producción de los Moldes que es un elemento crítico en el proceso productivo. La estructura de este trabajo tiene como objetivo revisar la literatura relacionada a este tipo de investigación, revisar los conceptos teóricos de: Desarrollo Sostenible, Cadena de Suministro verde, ISO 14031, Fabricación Aditiva, Impresión 3D y Moldeo por inyección; finalmente, se hace la aplicación de la teoría al caso de estudio. Como conclusión, se indica que adoptar un enfoque de Cadena de Suministro Verde permite a una empresa de producción desarrollar estrategias que impacten positivamente en su desempeño medioambiental y además contribuir a la sostenibilidad ambiental desde las relaciones entre los agentes involucrados en dicha cadena (desde proveedores hasta los clientes). En adición, la investigación puede ayudar y contribuir a futuras empresas del mismo rubro que deseen implementar esta metodología en sus organizaciones.