Ingeniería Industrial Comercial

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739

Examinar

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para determinar la producción de cultivos y personal requerido en las campañas de cosecha de la empresa Fundos Rejas SAC
    (Universidad ESAN, 2022) Briceño Rodríguez, Rafael Isaac; Celedonio Rojas, Marco Antonio; Crisóstomo Fernández, Walter Javier; Medrano Pelaez, Jose Luis; Salas Castillo, Patricia Elizabeth
    Diferentes empresas están utilizando técnicas de Machine Learning para analizar sus conjuntos de datos con la finalidad de encontrar comportamientos y patrones que les permitan crear modelos matemáticos predictivos, que a su vez pueden predecir diferentes variables de salida para determinar la producción y la cantidad de personal requerido para los cultivos de palta, arándano y mandarina. En el presente estudio, se utilizó una base de datos que comprende los años de campañas de cosecha (2019 a 2022). Para ello, la metodología CRISP-DM para obtener un mejor alineamiento en la etapa de desarrollo. Se utilizaron técnicas de aprendizaje supervisado entre ellas Regresión lineal Múltiple, Árbol de Regresión y Vectores de Soporte de Regresión, para medir el modelo que tiene mejor desempeño se utilizaron las métricas como el R2 y RMSE. Dentro de los resultados obtenidos, se obtuvo que, para determinar la producción del cultivo de palta, la mejor técnica fue la de Regresión Lineal Múltiple y para los cultivos de arándano y mandarina fue el Árbol de Regresión, por otro lado, para determinar la cantidad de trabajadores para el cultivo de palta el mejor modelo fue Árbol de Regresión y para los cultivos de mandarina y arándano fue el SVR.