Ingeniería Industrial Comercial
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739
Examinar
3 resultados
Resultados de la búsqueda
Ítem Acceso Abierto Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico(Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, SantiagoLa presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.Ítem Acceso Abierto Segmentación de clientes para mejorar la experiencia de compra de productos electrónicos en Falabella(Universidad ESAN, 2023) Aragón Gallegos, Angela Del Carmen; Cerquin Silva, Sabina Isabel; Escurra Yactayo, Renzo Omar; Roncalla Viena, Andrea LilianaEn la presente investigación se pretende encontrar perfiles de consumidores de la empresa Saga Falabella y para esto analizamos las ventas del sector electro de la empresa entre los meses de noviembre del 2022 y enero del 2023, tomando en cuenta campos como el género de los consumidores, marcas de preferencia, categoría de equipos, métodos de pago y unidades vendidas, así como también si las compras fueron efectuadas por internet o en los diferentes locales que esta empresa posee a nivel nacional. Mediante la aplicación de métodos de aprendizaje no supervisado como: clustering jerárquico, K-Means y K-Medoids, se limpió, normalizó y procesó la data, de esta forma se consiguió obtener segmentos de consumidores bien definidos. Se obtuvieron cinco grupos de clientes con diferentes características y preferencias, esto ayudaría a Saga Falabella a enfocar mejor sus estrategias de marketing y de retención de clientes, favoreciendo el aumento de sus ventas y la preferencia de los consumidores por encima de otras empresas del mismo rubro.Ítem Acceso Abierto Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la experiencia de compra mediante un sistema de recomendación de productos de Tottus(Universidad ESAN, 2022) Atencio Manyari, Stefany Anyela; De la Rosa Flores, Harold; Hilario Maravi, Sayuri; Navarro Huarcaya, Margareth; Rosas Vivanco, Dianaluz MilagrosActualmente, el constante cambio en los factores externos como la tecnología, el mercado, y ahora la pandemia global están obligando a las empresas del sector retail a buscar diferentes estrategias de venta para mejorar la experiencia de compra de sus clientes y así obtener mejores beneficios. Por ello, este trabajo busca segmentar a los clientes a través de la aplicación de técnicas de Machine Learning para crear un sistema de recomendación de productos personalizados de acuerdo con las características a la cual pertenece cada cliente y así mejorar la experiencia de compra agilizando y facilitando el proceso desde el aplicativo móvil de la empresa. La propuesta de segmentación se realizó aplicando para el preprocesamiento de los datos el método estadístico de PCA y se modeló mediante tres técnicas de aprendizaje no supervisado: K-means, K-medoids y Clustering Jerárquico. Estas técnicas se evaluaron de forma teórica considerando el método del codo y el dendograma los cuales resultaron en K grupos óptimos. Finalmente, para validarlo de forma práctica, se solicitó la evaluación de un experto de la empresa quien mediante una entrevista comparó los resultados de las técnicas y escogió a K-medoids como la segmentación más adecuada para el negocio.