Ingeniería Industrial Comercial
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739
Examinar
2 resultados
Resultados de la búsqueda
Ítem Restringido Evaluación de la implementación de Customer Relationship Management (CRM) y su impacto en la optimización de la gestión comercial del área de Educación Continua de la Instituto Carrión(Universidad ESAN, 2024) Arana Torpoco, Jean Fred; Cosio Chavez, Karen Valeria; Gonzalez Riva, Christian Isaias; Paredes Solano, Angela Karin; Polar Velasquez, Diego AlonsoEn un entorno educativo cada vez más dinámico, es crucial que las instituciones educativas tengan herramientas tecnológicas que les permitan mantener una gestión ágil y personalizada de las relaciones con los clientes para desarrollar una ventaja competitiva en el mercado. El presente trabajo de investigación busca evaluar la efectividad del sistema de gestión de relación con los clientes (CRM) que fue implementado en el Instituto Carrión en julio del 2022 y su impacto en la gestión comercial del Área de Educación Continua. Para ello se evaluó el impacto del CRM en la optimización de los tiempos de procesos, los niveles de ventas y la influencia en las estrategias comerciales, comparando los valores obtenidos antes y después de la implementación. Se identificó que el CRM generó en el Instituto Carrión un impacto positivo en los niveles de ventas (13.4% más), mejora en los tiempos de los procesos comerciales (8.20% menos) y la efectividad de las estrategias comerciales (16.13% más). Este trabajo aporta como un antecedente importante en el campo del sector educativo al proporcionar un caso práctico de tecnología aplicada para mejorar la gestión comercial en instituciones de educación superior.Ítem Restringido Mejora en el proceso de planificación de la demanda en la empresa de consumo masivo ALICORP utilizando técnicas de Machine Learning(Universidad ESAN, 2023) Gutierrez Macedo, Allison Giomara; Prada Quintana, Christian; Quispe Melgarejo, Ursi Nicole; Quispe Rodriguez, Carmen MelizaEn el mundo globalizado en el que vivimos, es importante que las empresas utilicen herramientas avanzadas como el Machine Learning para mantenerse a la vanguardia y satisfacer las exigencias de sus clientes. La presente investigación se centra en la aplicación de técnicas de Machine Learning en la empresa ALICORP. La naturaleza cambiante y exigente del rubro, obliga a las organizaciones a buscar cómo satisfacer la demanda. Las técnicas de machine learning son utilizadas para proyectar la demanda y controlar los inventarios de manera eficiente. Para determinar la técnica más adecuada para proyección de datos se compararon tres técnicas: Regresión Lineal Múltiple, Árbol de Decisión de Regresión y Vectores de Soporte de Regresión. Luego se compararon métricas como RMSE y R2, se concluyó que la técnica de Árbol de Decisión de Regresión es la mejor opción ya que nos brindó RMSE de 12 y R2 de 0.95. La aplicación de esta técnica es crucial porque permite proyectar la demanda con mayor precisión, teniendo mejor control sobre sus inventarios, lo que se traduce en mayor rentabilidad. Usar Machine Learning en la proyección es una herramienta poderosa y, en particular, la técnica de Árbol de Decisión de Regresión ha demostrado ser altamente efectiva.