Ingeniería Industrial Comercial
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739
Examinar
4 resultados
Resultados de la búsqueda
Ítem Restringido Técnicas de machine learning para la mejora del método de proyección de ventas de los análisis de multirresiduos de plaguicidas en alimentos de Mérieux Nutrisciences(Universidad ESAN, 2023) Huisacayna Cutipa, Abigail Nelly; Jacinto Martell, Samuel Humberto; La Rosa Gadea, Marghore Susana; Machuca Abanto, Axl Boris; Torres Yupanqui, Rocio del Pilar LeslyEn la actualidad es importante que toda empresa realice pronósticos de todo tipo, que ayuden a mitigar el impacto negativo y/o aprovechar los impactos positivos que los cambios generan. El propósito del presente trabajo es identificar la técnica del aprendizaje automático que mejore el método de proyección de ventas generadas por el análisis de multirresiduos de plaguicidas en alimentos de la empresa Mérieux Nutrisciences. Se emplea la metodología Cross-Industry Standard Process for Data Mining (CRISP-DM) para determinar el modelo predictivo óptimo para la empresa. Después de adquirir y adecuar la data, se aplica y analiza en las técnicas de regresión lineal, light gradient boosting machine (LightGBM), seasonal auto regressive integrated moving average (SARIMA) y long short-term memory (LSTM). Con la ejecución de los modelos establecidos, se concluyó que el uso de modelos predictivos permite a las empresas, tomar decisiones más acertadas y mejorar su gestión, además, se visualizó que el modelo LightGBM tiene una mayor precisión que los otros modelos con un 0.0152 de mean squared error (MSE). Se recomienda realizar el modelado con un mayor número de data para generar un pronóstico más preciso, contrastar con el laboratorio y realizar estudios adicionales para ajustar hiperparámetros propios del modelo.Ítem Embargo Desarrollo de un modelo de Machine Learning para la clasificación de clientes siniestrosos de seguro vehicular en la compañía aseguradora MAPFRE Perú(Universidad ESAN, 2023) Mariluz Saavedra, Julio Alejandro; Torres Ricalde, Luz Edith; Velazco Guerrero, MelissaLas últimas innovaciones tecnológicas, como Big Data o Maching Learning, están transformando la forma en cómo se desempeñan las compañías en casi todos los sectores, incluyendo el rubro asegurador. Este estudio se centra en la incorporación de técnicas de Machine Learning en MAPFRE Perú para desarrollar un modelo predictivo que permita identificar a los clientes con mayor probabilidad de sufrir un siniestro vehicular. El objetivo es optimizar el control de los gastos asociados a estos incidentes en la empresa. Para determinar el modelo más optimo se utilizaron cinco diferentes algoritmos de aprendizaje supervisado: Logistic regression, Linear Support Vector Machine, k-Nearest Neighbors, Classification and Regression Tree y Random Forest. Finalmente, para comparar los resultados de cada modelo se utilizaron las métricas del "accuracy" y el "F1-score". El modelo seleccionado fue Random Forest, con el cual se obtuvo un buen rendimiento con el conjunto de datos preprocesado “dfL4”, teniendo un “accuracy” del 82.97% y un “F1-score” del 75.67%. El potencial que implica la aplicación de Machine Learning en la industria aseguradora es considerable, por lo que es esencial continuar avanzando en investigaciones que incorporen nuevas variables, técnicas y modelos para seguir aprovechando sus beneficios.Ítem Embargo Implementación de un modelo de Machine Learning para la predicción de la demanda de muebles de sala en la empresa Mallhogar.com(Universidad ESAN, 2023) Chipana De La Cruz, David Ismael; Chugnas Sebastian, Analy Sandy; Chupillón Bautista, Yarelis Nicole; Guzmán Ramos, Pedro Jesús; Huancaya Rivas, Hasdaly AnjelyLa empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción, gestionar sus inventarios y agilizar la distribución de productos terminados. Para lograrlo se recopiló información de datos históricos de venta del periodo 2020-2023, se aplicó modelos de Machine Learning, en cinco tipos de muebles de sala. Los modelos de predicción que se emplearon fueron Regresión Lineal, CatBoost, XGBoost y LightGBM. Los resultados fueron evaluados comparando métricas como el Factor de determinación, Error Cuadrático Medio y Raíz del Error Cuadrático Medio, se analizó cómo el modelo se ajusta a los datos de entrenamiento con sus posibles limitaciones. Los experimentos realizados mostraron que los modelos LightGBM y XGBoost tuvieron mejores resultados con una ligera superioridad en comparación a los otros modelos, lo cual se vio reflejado en todos los modelos de muebles analizados, al final se obtuvo la predicción de muebles a vender para los meses de diciembre del 2023, enero del 2024 y febrero del 2024.Ítem Acceso Abierto Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning(Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony YeltsinEste estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.