3. Investigación

URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/4065

Esta colección reúne las contribuciones de acceso abierto realizadas por los docentes e investigadores de la Universidad ESAN, publicadas en fuentes académicas externas. Los trabajos aquí incluidos abarcan una amplia gama de temas de relevancia académica y profesional, y están orientados a fortalecer el conocimiento y el impacto de la investigación en diversas disciplinas. Estos estudios están disponibles para el público en general, promoviendo la difusión y el intercambio de conocimientos en beneficio de la comunidad académica y de la sociedad.

Examinar

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Miniatura
    ÍtemAcceso Abierto
    A prediction model based on data mining to forecast the expectations of passing from a college student
    (ESRSA Publications Pvt. Ltd., 2016-10-26) Acosta de La Cruz, Pedro R.; Flores Salinas, José A.; Meza Pinto, Miguel A.; Tineo Córdova, Freddy C.
    The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results.
  • Miniatura
    ÍtemAcceso Abierto
    A study of fuzzy data bases: an application to a Peruvian case
    (ESRSA Publications Pvt. Ltd., 2016-11-15) Acosta De La Cruz, Pedro R.; Meza Pinto, Miguel A.; Flores Salinas, José A.; Tineo Córdova, Freddy C.
    This paper aims to show the various types of data that contain in an intrinsically way fuzzy or imperfect data that are presented in the real world. A form of implementation is described that allows extending the capabilities of a database by using layers levels, emphasizing in the concept of inheritance. What is described is illustrated by an example applied to the Peruvian reality, which is shown with a certain level of detail.