Facultad de Ingeniería

URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3729

Examinar

Resultados de la búsqueda

Mostrando 1 - 10 de 15
  • Miniatura
    ÍtemAcceso Abierto
    Metodología de Valoración Contingente de ruido vehicular mediante Machine Learning: caso del bypass del Óvalo Monitor Huáscar ubicado en Santiago de Surco y La Molina
    (Universidad ESAN, 2024) Cama Montesinos, Andrea Alessandra; Rivera Bueno, Jose Pablo; Salazar Sanchez, Leslie Alexandra; Sandoval Alcala, Jean Pierre Andre; Soria Asin, Alejandra Marcela
    El estudio examina el impacto negativo del tránsito en la calidad de vida de la población en los distritos de Santiago de Surco y La Molina, en particular en relación con la contaminación por ruido producida por el Bypass del Óvalo Monitor Huáscar. Se propone el uso de la inteligencia artificial (Machine Learning) como una herramienta innovadora para predecir la disposición de pago (DAP) de la población para reducir el ruido del tránsito. El estudio se centra en crear un modelo de valoración contingente que se combine con algoritmos de aprendizaje automático para hacer predicciones sobre la DAP de la población en varios escenarios. Los hallazgos de esta investigación podrían ayudar a tomar decisiones informadas para mejorar la planificación urbana y la gestión del tránsito con el objetivo de reducir los efectos negativos del ruido del tránsito.
  • Miniatura
    ÍtemAcceso Abierto
    Desarrollo de algoritmo de recomendación de SKU para los clientes de Alicorp que cuentan con un canal de atención digital usando técnicas de machine learning
    (Universidad ESAN, 2024) Espinoza Sutta, Milton; Limachi Pampamallco, Ana Isabel; Melo Locumber, Noe; Rodriguez Otiniano, Junior Ricardo; Valencia Cañote, Sebastian
    Saber qué es lo que quiere el cliente es uno de los retos más grandes que afrontan las empresas en la actualidad. En cuanto al uso de tecnología, las nuevas tendencias que aplican soluciones cuyo objetivo es mejorar, de manera incremental, la capacidad de poder recomendar productos o servicios de manera más exacta. No obstante, para identificar lo que desean los clientes, se necesita una base histórica que nos permita comprender sus necesidades y preferencias. Por ello, este trabajo de investigación se enfoca en el desarrollo de un algoritmo de recomendación que, a través del procesamiento de datos, pueda recomendar productos según el perfil del cliente. La investigación utiliza datos de Alicorp, una empresa peruana líder en consumo masivo, con dos millones de transacciones de ventas de clientes como panaderías, restaurantes y bodegas. Se aplicaron técnicas basadas en reglas como RFM y algoritmos de machine learning como Kmeans, LGBM Classifier y LGBM Ranker en la etapa de modelamiento. Para definir el mejor algoritmo se utilizó una medida de recall promedio de clientes de los productos recomendados. La familia de algoritmos LGBM demostró una precisión superior, destacando el LGBM Ranker que logró un impresionante recall de 0.8950.
  • Miniatura
    ÍtemAcceso Abierto
    Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
    (Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego Alfredo
    Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
  • Miniatura
    ÍtemAcceso Abierto
    Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico
    (Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, Santiago
    La presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.
  • Miniatura
    ÍtemAcceso Abierto
    Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning
    (Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony Yeltsin
    Este estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para incrementar el rendimiento de los campos de caña de azúcar en una empresa agroindustrial
    (Universidad ESAN, 2023) Alcantara Bernal, Francisco Fernando; Mckitting Cornejo, Gerardo Gabriel; Siancas Gutierrez, Susan Aracelly; Zaldívar Valdez, Ana Sofía
    El rápido crecimiento demográfico genera una presión importante sobre la agricultura mundial debido al aumento de la demanda y la reducción de espacios aptos para el cultivo. Esto obliga a que las empresas agroindustriales tengan que obtener mejores rendimientos de cada campo para mantener o aumentar sus niveles de producción. La presente investigación busca complementar los estudios sobre la relación de las variables que afectan el rendimiento de los campos de cultivo de caña de azúcar. El objetivo de este estudio es predecir el porcentaje de sacarosa a obtenerse de un campo de caña de azúcar; para ello, se usaron dos técnicas de aprendizaje supervisado: regresión lineal y regresión vectorial de soporte (SVR), ejecutándose cada una tanto con data normalizada como sin normalizar. Finalmente, se compararon los resultados de cada modelo usando el coeficiente de determinación y raíz del error cuadrático medio. El modelo seleccionado fue el de SVR con kernel RBF y data normalizada, teniendo una precisión del 38.3% y un RMSE de 0.7962 puntos de sacarosa. El potencial que supone el uso de Machine Learning en el sector agroindustrial es muy grande y por ello se deben de seguir desarrollando investigaciones con nuevas variables, técnicas y modelos.
  • Miniatura
    ÍtemAcceso Abierto
    Segmentación de clientes para mejorar la experiencia de compra de productos electrónicos en Falabella
    (Universidad ESAN, 2023) Aragón Gallegos, Angela Del Carmen; Cerquin Silva, Sabina Isabel; Escurra Yactayo, Renzo Omar; Roncalla Viena, Andrea Liliana
    En la presente investigación se pretende encontrar perfiles de consumidores de la empresa Saga Falabella y para esto analizamos las ventas del sector electro de la empresa entre los meses de noviembre del 2022 y enero del 2023, tomando en cuenta campos como el género de los consumidores, marcas de preferencia, categoría de equipos, métodos de pago y unidades vendidas, así como también si las compras fueron efectuadas por internet o en los diferentes locales que esta empresa posee a nivel nacional. Mediante la aplicación de métodos de aprendizaje no supervisado como: clustering jerárquico, K-Means y K-Medoids, se limpió, normalizó y procesó la data, de esta forma se consiguió obtener segmentos de consumidores bien definidos. Se obtuvieron cinco grupos de clientes con diferentes características y preferencias, esto ayudaría a Saga Falabella a enfocar mejor sus estrategias de marketing y de retención de clientes, favoreciendo el aumento de sus ventas y la preferencia de los consumidores por encima de otras empresas del mismo rubro.
  • Miniatura
    ÍtemAcceso Abierto
    Propuesta de modelo predictivo empleando la técnica de machine learning para determinar la viabilidad de las cotizaciones de los proyectos de evacuación y señalización en la empresa P & R Arquitectos Consultores S.A.C.
    (Universidad ESAN, 2023) Ajalcriña Grimaldo, Lourdes Alexandra; Alderete Arias, Fiorella Angelica; Carrizales Valencia, Camila Graciela; Tipe Carrasco, Jhosep Fernando
    Nos encontramos en la era de transformación digital en el cual las empresas buscan automatizar sus procesos, esto con el fin de mejorar la productividad, la experiencia del cliente, reducir los costos y mejorar la toma de decisiones. En el presente trabajo, analizaremos a la empresa P & R Arquitectos, la cual presenta una problemática en los proyectos de evacuación y señalización ya que el 76% de cotizaciones son rechazadas. Es por ello que se analizaron una serie de variables que se evalúan para determinar el estado final de las cotizaciones y, a partir de ellas se construyeron los modelos de Machine Learning utilizando 4 diferentes técnicas, tales como: K-NN, Support Vector Machine, Regresión Logística y Árbol de decisión con el fin de obtener el modelo que sea más preciso y, además, se compararon los resultados con normalización y sin normalización. De los resultados obtenidos, la técnica de árbol de decisiones tiene una mejor predicción de las cotizaciones (85.88% con normalización). Se espera que el modelo de predicción de cotizaciones ayude en tomar mejores decisiones al momento de brindar una respuesta final al cliente ya sea realizando ajustes en cuestión de costos o negociando con el cliente de manera directa.
  • Miniatura
    ÍtemAcceso Abierto
    Aplicación de técnicas de Machine Learning para predecir el número de ventas de créditos en el sector bancario
    (Universidad ESAN, 2023) Rodriguez Villanueva, Alvaro André; Sánchez Adauto, Egor Leonardo; Valverde Rojo, Lisset Milena
    Una de las principales fuentes de ingreso del sector bancario es el otorgamiento de créditos. La captación de clientes frente a este producto depende de montos y tasas de interés atractivas. Uno de los canales de venta de los créditos es el telemarketing el cual proactivamente ofrece préstamos. El presente trabajo propone al área de telemarketing de un banco la elaboración de un modelo predictivo con técnicas de machine learning que permita conocer el número de ventas de crédito que se realizarán con el fin de agilizar la toma de decisiones frente a estrategias de venta y mejorar la planificación de recursos para optimizar el costo de venta. Para la construcción del modelo se utilizaron técnicas de aprendizaje supervisado de clasificación k-NN y SVM. En la primera simulación se tuvo niveles de precisión de 61.68% y 68.41% respectivamente. Dada la dispersión de los datos se realizó la normalización la cual arrojó niveles de precisión de 91.12% para k-NN y 93.85% para SVM siendo este último la mejor técnica de predicción. Como futuros pasos se propone la utilización de otras técnicas de machine learning que permitan una comparación de resultados de predicción con los modelos elaborados en este trabajo.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para la predicción del caudal efluente de la represa Condoroma
    (Universidad ESAN, 2023) Encina Dávila, Astrid Floria Milagritos; Pacheco Hinojoza, Mirella Alejandra; Vargas Martell, Vannia Giovana
    Distintos estudios están empleando técnicas de Machine Learning para el análisis de datos para hallar comportamientos que posibiliten crear modelos matemáticos predictivos y pronosticar diversas variables de salida. En este sentido, el presente trabajo de investigación se enfoca en los esfuerzos realizados para predecir el caudal efluente en la represa Condoroma, perteneciente a la Autoridad Autónoma de Majes (Autodema), donde se incluye el uso de técnicas de aprendizaje supervisado. Para ello, se utiliza una base de datos abiertos de dos plataformas de Autodema: Movimiento Hídrico Sistema Colca y Meteorología Represas. Estos datos históricos son resultados de mediciones mensuales del sistema de monitoreo del recurso hídrico. Además, se manejan para entrenar los modelos Regresión Lineal, Regresión de Vectores de Soporte (SVR) y ARIMA; asimismo, se utilizaron métricas como el MAE, MSE, RMSE y varianza para medir el modelo con el mejor rendimiento. Con base en los resultados obtenidos, se determinó que para predecir el caudal efluente de la represa Condoroma la mejor técnica fue la de SVR que obtuvo un MAE de 5.536, un MSE de 83.701, un RMSE de 9.145 y una varianza igual a 0.427.