Facultad de Ingeniería
URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3729
Examinar
2 resultados
Resultados de la búsqueda
Ítem Acceso Abierto Técnicas de Machine Learning para incrementar el rendimiento de los campos de caña de azúcar en una empresa agroindustrial(Universidad ESAN, 2023) Alcantara Bernal, Francisco Fernando; Mckitting Cornejo, Gerardo Gabriel; Siancas Gutierrez, Susan Aracelly; Zaldívar Valdez, Ana SofíaEl rápido crecimiento demográfico genera una presión importante sobre la agricultura mundial debido al aumento de la demanda y la reducción de espacios aptos para el cultivo. Esto obliga a que las empresas agroindustriales tengan que obtener mejores rendimientos de cada campo para mantener o aumentar sus niveles de producción. La presente investigación busca complementar los estudios sobre la relación de las variables que afectan el rendimiento de los campos de cultivo de caña de azúcar. El objetivo de este estudio es predecir el porcentaje de sacarosa a obtenerse de un campo de caña de azúcar; para ello, se usaron dos técnicas de aprendizaje supervisado: regresión lineal y regresión vectorial de soporte (SVR), ejecutándose cada una tanto con data normalizada como sin normalizar. Finalmente, se compararon los resultados de cada modelo usando el coeficiente de determinación y raíz del error cuadrático medio. El modelo seleccionado fue el de SVR con kernel RBF y data normalizada, teniendo una precisión del 38.3% y un RMSE de 0.7962 puntos de sacarosa. El potencial que supone el uso de Machine Learning en el sector agroindustrial es muy grande y por ello se deben de seguir desarrollando investigaciones con nuevas variables, técnicas y modelos.Ítem Acceso Abierto Técnicas de Machine Learning para determinar la producción de cultivos y personal requerido en las campañas de cosecha de la empresa Fundos Rejas SAC(Universidad ESAN, 2022) Briceño Rodríguez, Rafael Isaac; Celedonio Rojas, Marco Antonio; Crisóstomo Fernández, Walter Javier; Medrano Pelaez, Jose Luis; Salas Castillo, Patricia ElizabethDiferentes empresas están utilizando técnicas de Machine Learning para analizar sus conjuntos de datos con la finalidad de encontrar comportamientos y patrones que les permitan crear modelos matemáticos predictivos, que a su vez pueden predecir diferentes variables de salida para determinar la producción y la cantidad de personal requerido para los cultivos de palta, arándano y mandarina. En el presente estudio, se utilizó una base de datos que comprende los años de campañas de cosecha (2019 a 2022). Para ello, la metodología CRISP-DM para obtener un mejor alineamiento en la etapa de desarrollo. Se utilizaron técnicas de aprendizaje supervisado entre ellas Regresión lineal Múltiple, Árbol de Regresión y Vectores de Soporte de Regresión, para medir el modelo que tiene mejor desempeño se utilizaron las métricas como el R2 y RMSE. Dentro de los resultados obtenidos, se obtuvo que, para determinar la producción del cultivo de palta, la mejor técnica fue la de Regresión Lineal Múltiple y para los cultivos de arándano y mandarina fue el Árbol de Regresión, por otro lado, para determinar la cantidad de trabajadores para el cultivo de palta el mejor modelo fue Árbol de Regresión y para los cultivos de mandarina y arándano fue el SVR.