Facultad de Ingeniería

URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3729

Examinar

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Miniatura
    ÍtemAcceso Abierto
    Metodología de Valoración Contingente de ruido vehicular mediante Machine Learning: caso del bypass del Óvalo Monitor Huáscar ubicado en Santiago de Surco y La Molina
    (Universidad ESAN, 2024) Cama Montesinos, Andrea Alessandra; Rivera Bueno, Jose Pablo; Salazar Sanchez, Leslie Alexandra; Sandoval Alcala, Jean Pierre Andre; Soria Asin, Alejandra Marcela
    El estudio examina el impacto negativo del tránsito en la calidad de vida de la población en los distritos de Santiago de Surco y La Molina, en particular en relación con la contaminación por ruido producida por el Bypass del Óvalo Monitor Huáscar. Se propone el uso de la inteligencia artificial (Machine Learning) como una herramienta innovadora para predecir la disposición de pago (DAP) de la población para reducir el ruido del tránsito. El estudio se centra en crear un modelo de valoración contingente que se combine con algoritmos de aprendizaje automático para hacer predicciones sobre la DAP de la población en varios escenarios. Los hallazgos de esta investigación podrían ayudar a tomar decisiones informadas para mejorar la planificación urbana y la gestión del tránsito con el objetivo de reducir los efectos negativos del ruido del tránsito.
  • Miniatura
    ÍtemAcceso Abierto
    Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
    (Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego Alfredo
    Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
  • Miniatura
    ÍtemRestringido
    Predicción de la demanda empleando técnicas de machine learning en una empresa industrial de películas plásticas
    (Universidad ESAN, 2023) Pacheco Prieto, Alexandra Gabriela; Pari Cruz, Milagros Margaret; Rojas Caro, Lady Leslie
    La empresa en estudio se dedica a la producción y comercialización de láminas para empaques flexibles. Actualmente, la industria de productos plásticos ha venido mostrando un gran potencial y dinamismo con un crecimiento en los últimos años. Por ello, se ha propuesto predecir de manera exacta la demanda aplicando herramientas de Machine Learning, y así producir la cantidad correcta para atender a sus clientes y generar el stock necesario. En la investigación se aplicó una metodología cuantitativa con un diseño experimental y alcance correlacional, siendo la variable dependiente a predecir la demanda de productos. Se realizó una comparativa de cuatro algoritmos: regresión lineal, árboles de decisión, ARIMA y vectores de soporte de regresión para determinar el algoritmo adecuado a seguir. Finalmente, analizando las métricas de error de los modelos, el algoritmo de Regresión Lineal resultó con un R2 de 0.98 que indica su mayor ajuste al comportamiento de la demanda. Este dato nos permitirá tomar decisiones inmediatas con respecto al abastecimiento de materia prima, una programación correcta de producción y determinar el stock en inventarios que permitan responder rápidamente a la demanda cambiante.
  • Miniatura
    ÍtemAcceso Abierto
    Propuesta de modelo predictivo empleando la técnica de machine learning para determinar la viabilidad de las cotizaciones de los proyectos de evacuación y señalización en la empresa P & R Arquitectos Consultores S.A.C.
    (Universidad ESAN, 2023) Ajalcriña Grimaldo, Lourdes Alexandra; Alderete Arias, Fiorella Angelica; Carrizales Valencia, Camila Graciela; Tipe Carrasco, Jhosep Fernando
    Nos encontramos en la era de transformación digital en el cual las empresas buscan automatizar sus procesos, esto con el fin de mejorar la productividad, la experiencia del cliente, reducir los costos y mejorar la toma de decisiones. En el presente trabajo, analizaremos a la empresa P & R Arquitectos, la cual presenta una problemática en los proyectos de evacuación y señalización ya que el 76% de cotizaciones son rechazadas. Es por ello que se analizaron una serie de variables que se evalúan para determinar el estado final de las cotizaciones y, a partir de ellas se construyeron los modelos de Machine Learning utilizando 4 diferentes técnicas, tales como: K-NN, Support Vector Machine, Regresión Logística y Árbol de decisión con el fin de obtener el modelo que sea más preciso y, además, se compararon los resultados con normalización y sin normalización. De los resultados obtenidos, la técnica de árbol de decisiones tiene una mejor predicción de las cotizaciones (85.88% con normalización). Se espera que el modelo de predicción de cotizaciones ayude en tomar mejores decisiones al momento de brindar una respuesta final al cliente ya sea realizando ajustes en cuestión de costos o negociando con el cliente de manera directa.
  • Miniatura
    ÍtemAcceso Abierto
    Aplicación de técnicas de Machine Learning para predecir el número de ventas de créditos en el sector bancario
    (Universidad ESAN, 2023) Rodriguez Villanueva, Alvaro André; Sánchez Adauto, Egor Leonardo; Valverde Rojo, Lisset Milena
    Una de las principales fuentes de ingreso del sector bancario es el otorgamiento de créditos. La captación de clientes frente a este producto depende de montos y tasas de interés atractivas. Uno de los canales de venta de los créditos es el telemarketing el cual proactivamente ofrece préstamos. El presente trabajo propone al área de telemarketing de un banco la elaboración de un modelo predictivo con técnicas de machine learning que permita conocer el número de ventas de crédito que se realizarán con el fin de agilizar la toma de decisiones frente a estrategias de venta y mejorar la planificación de recursos para optimizar el costo de venta. Para la construcción del modelo se utilizaron técnicas de aprendizaje supervisado de clasificación k-NN y SVM. En la primera simulación se tuvo niveles de precisión de 61.68% y 68.41% respectivamente. Dada la dispersión de los datos se realizó la normalización la cual arrojó niveles de precisión de 91.12% para k-NN y 93.85% para SVM siendo este último la mejor técnica de predicción. Como futuros pasos se propone la utilización de otras técnicas de machine learning que permitan una comparación de resultados de predicción con los modelos elaborados en este trabajo.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para la predicción del caudal efluente de la represa Condoroma
    (Universidad ESAN, 2023) Encina Dávila, Astrid Floria Milagritos; Pacheco Hinojoza, Mirella Alejandra; Vargas Martell, Vannia Giovana
    Distintos estudios están empleando técnicas de Machine Learning para el análisis de datos para hallar comportamientos que posibiliten crear modelos matemáticos predictivos y pronosticar diversas variables de salida. En este sentido, el presente trabajo de investigación se enfoca en los esfuerzos realizados para predecir el caudal efluente en la represa Condoroma, perteneciente a la Autoridad Autónoma de Majes (Autodema), donde se incluye el uso de técnicas de aprendizaje supervisado. Para ello, se utiliza una base de datos abiertos de dos plataformas de Autodema: Movimiento Hídrico Sistema Colca y Meteorología Represas. Estos datos históricos son resultados de mediciones mensuales del sistema de monitoreo del recurso hídrico. Además, se manejan para entrenar los modelos Regresión Lineal, Regresión de Vectores de Soporte (SVR) y ARIMA; asimismo, se utilizaron métricas como el MAE, MSE, RMSE y varianza para medir el modelo con el mejor rendimiento. Con base en los resultados obtenidos, se determinó que para predecir el caudal efluente de la represa Condoroma la mejor técnica fue la de SVR que obtuvo un MAE de 5.536, un MSE de 83.701, un RMSE de 9.145 y una varianza igual a 0.427.