Diseño de un sistema de visión computacional para el pre-diagnóstico de la enfermedad de Parkinson a partir de la escritura de una persona

Miniatura

Enlace externo

Fecha

2021

Título de la revista

ISSN de la revista

Título del volumen

Fecha de fin de embargo

Redes Sociales




Citación

Citación APA

Resumen

Actualmente, la Enfermedad de Parkinson es la segunda enfermedad neurodegenerativa con más presencia en la población a nivel mundial, afecta directamente la calidad de vida y actividades diarias de una persona. Esta enfermedad está en aumento no solo en el Perú sino en el mundo. Por lo cual, el objetivo de la investigación es implementar un modelo de visión computacional para el pre-diagnóstico de la Enfermedad de Parkinson (EP) a partir de la escritura de una persona. El presente trabajo de investigación es de tipo experimental, explicativo y de enfoque cuantitativo, las fases son las siguientes: Aquisición, Preprocesamiento, Extracción de Características y Modelado y Clasificación. Los resultados de los experimentos alcanzan el nivel del 99% de Accuracy, 99% de Precision, 99% de Recall, 98% de F1 Score y 98% de AUC. Se concluye que, se obtuvo y construyó una base de datos que contiene los manuscritos de personas sanas y con EP. Segundo, se utilizaron técnicas de preprocesamiento, las cuales permitieron mejorar la calidad de las imágenes. Tercero, para la construcción del algoritmo, se hizo un procesamiento a las imágenes, se realizaron experimentos con descriptores SIFT, SURF, ORB y HOG para la extracción de características. Cuarto, se utilizó SVM como modelo de clasificación de Machine Learning (ML), además, se utilizaron redes convolucionales con distintas arquitecturas como VGG16, VGG19, Inception, ResNet50 y LeNet y finalmente se utilizaron técnicas que combinan las CNN + ML, con los modelos SVM, RF y KNN.

Descripción

Palabras clave

Parkinson, Visión computacional, Escritura, Pre-diagnóstico médico

Citación

Endorsement

Review

Supplemented By

Referenced By