Predicción del estado de financiamiento de proyectos de tecnología en sitio web de crowdfunding Kickstarter mediante modelo de Aprendizaje Profundo Multimodal

Miniatura

Enlace externo

Fecha

2021

Título de la revista

ISSN de la revista

Título del volumen

Fecha de fin de embargo

Redes Sociales




Citación

Citación APA

Resumen

Desde la aparición del crowdfunding, muchos emprendedores han presentado sus proyectos al público para conseguir su financiamiento. Durante el período 2009-2019, el 37% de proyectos de Kickstarter, una de las plataformas de financiamiento colectivo más populares, alcanzó ser financiado exitosamente. Se han estado utilizando distintas metodologías de Inteligencia Artificial, considerando todas las categorías en esta plataforma para crear modelos predictivos. Sin embargo, este ratio solo alcanza el 20% para Tecnología. El objetivo de esta investigación fue predecir el estado de financiamiento de proyectos de tecnología en Kickstarter mediante un modelo de Aprendizaje Profundo Multimodal. Siguiendo la metodología CRISP-DM, se implementó un modelo ensamblado de otros modelos de Aprendizaje Profundo para 3 modalidades: un Perceptrón Multicapa para la Metainformación, una Red Neuronal Convolucional para la descripción y un modelo LSTM Bidireccional para los comentarios de los patrocinadores. Se utilizó información de más de 27 mil proyectos de tecnología en Kickstarter entre 2009 y 2019. El modelo propuesto superó a los modelos de la base de línea en cada métrica, alcanzando un valor de 93% de AUC, su mejor desempeño. Se logró resolver el problema bajo una nueva perspectiva, además de aportar mayor conocimiento y un prototipo para apoyar a los emprendedores.

Descripción

Palabras clave

Financiamiento de proyectos, Sitios web, Redes neuronales, Espíritu de empresa

Citación

Endorsement

Review

Supplemented By

Referenced By

El item tiene asociados los siguientes ficheros de licencia: Creative Commons

Excepto si se señala otra cosa, la licencia del item se describe como info:eu-repo/semantics/openAccess