Joint non-parametric estimation of mean and auto-covariances for Gaussian processes
Archivos
Fecha
2022-05-05
Título de la revista
ISSN de la revista
Título del volumen
Fecha de fin de embargo
Redes Sociales
Citación
Citación APAResumen
Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc.
Descripción
Palabras clave
Demmler-Reinsch basis, Empirical Bayes, Base de Demmler-Reinsch, Spectral density, Bayes empírico, Densidad espectral, Stationary process, Proceso estacionario
Citación
Krivobokova, T., Serra, P., Rosales, F., & Klockmann, K. (2022). Joint non-parametric estimation of mean and auto-covariances for Gaussian processes. Computational Statistics and Data Analysis, 173(2022), 107519. https://doi.org/10.1016/j.csda.2022.107519
Colecciones
Endorsement
Review
Supplemented By
Referenced By
El item tiene asociados los siguientes ficheros de licencia: Creative Commons
Excepto si se señala otra cosa, la licencia del item se describe como info:eu-repo/semantics/openAccess