Propuesta de modelo predictivo para la detección de fraude en mensajes de texto mediante el uso de Redes Neuronales Recurrentes

Miniatura

Enlace externo

Fecha

2024

Título de la revista

ISSN de la revista

Título del volumen

Fecha de fin de embargo

Redes Sociales




Citación

Citación APA

Resumen

El smishing, o fraude por mensajes de texto, se ha vuelto un problema creciente en el país, debido a la falta de mecanismos adecuados para detectar mensajes fraudulentos, lo que ha generado que muchos ciudadanos sean víctimas de estafa al recibir estos tipos de mensajes. El estudio tuvo como objetivo encontrar el mejor clasificador de fraude en mensajes de texto en el contexto peruano, para lo cual se recolectaron 527 imágenes de las que se obtuvieron 1740 mensajes, etiquetados manualmente como FRAUDE o LEGITIMO, basándose en recomendaciones de entidades públicas/privadas, y validadas por una experta en fraude del rubro de telecomunicaciones; posteriormente, se integraron con bases en otros idiomas, logrando un total de 4475 registros. Los mensajes fueron vectorizados con Word2Vec y FastText. Finalmente, se entrenaron algoritmos de Redes Neuronales Recurrentes (RNN, LSTM, GRU) y combinaciones con CNN para identificar el mejor modelo. Los resultados evaluados con Accuracy, Precision, Recall, F1-score y AUC evidenciaron que el mejor clasificador fue una RNN de 3 capas (200, 160, 1) usando el embedding FastText-NewL de 300 dimensiones, alcanzando 85.62% en Accuracy, 84.49% en Precision, 88.77% en Recall, 86.57% en F1-score y 93.14% en AUC.

Descripción

Palabras clave

Seguridad informática, Fraude, Mensajería electrónica, Aprendizaje automático, Redes neuronales

Citación

Endorsement

Review

Supplemented By

Referenced By

El item tiene asociados los siguientes ficheros de licencia: Creative Commons

Excepto si se señala otra cosa, la licencia del item se describe como info:eu-repo/semantics/openAccess