Ingeniería de Tecnologías de Información y Sistemas
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3737
Examinar
8 resultados
Resultados de la búsqueda
Ítem Acceso Abierto Desarrollo de algoritmo de recomendación de SKU para los clientes de Alicorp que cuentan con un canal de atención digital usando técnicas de machine learning(Universidad ESAN, 2024) Espinoza Sutta, Milton; Limachi Pampamallco, Ana Isabel; Melo Locumber, Noe; Rodriguez Otiniano, Junior Ricardo; Valencia Cañote, SebastianSaber qué es lo que quiere el cliente es uno de los retos más grandes que afrontan las empresas en la actualidad. En cuanto al uso de tecnología, las nuevas tendencias que aplican soluciones cuyo objetivo es mejorar, de manera incremental, la capacidad de poder recomendar productos o servicios de manera más exacta. No obstante, para identificar lo que desean los clientes, se necesita una base histórica que nos permita comprender sus necesidades y preferencias. Por ello, este trabajo de investigación se enfoca en el desarrollo de un algoritmo de recomendación que, a través del procesamiento de datos, pueda recomendar productos según el perfil del cliente. La investigación utiliza datos de Alicorp, una empresa peruana líder en consumo masivo, con dos millones de transacciones de ventas de clientes como panaderías, restaurantes y bodegas. Se aplicaron técnicas basadas en reglas como RFM y algoritmos de machine learning como Kmeans, LGBM Classifier y LGBM Ranker en la etapa de modelamiento. Para definir el mejor algoritmo se utilizó una medida de recall promedio de clientes de los productos recomendados. La familia de algoritmos LGBM demostró una precisión superior, destacando el LGBM Ranker que logró un impresionante recall de 0.8950.Ítem Acceso Abierto Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito(Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego AlfredoDiferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.Ítem Acceso Abierto Aplicación de modelos de Machine Learning para la planificación de la demanda en la empresa CBC Peruana S.A.C(Universidad ESAN, 2023) Maciel Carpio, Zannie Xilena; Salas Barrera, Felipe Alvaro; Sanchez Anticona, Crishtian Sebastian; Sanchez Chacon, Gabriela de los Angeles; Santana Fernandez, Jose DanielLa industria de bebidas enfrenta desafíos específicos en la planificación de la demanda, ya que la variabilidad de los patrones de consumo y la imprevisibilidad del cliente exige a las empresas establecer estrategias para satisfacer la demanda. El presente trabajo de investigación se centra en la aplicación de técnicas de Machine Learning para pronosticar la demanda de dos productos clave de la empresa CBC Peruana S.A.C: paquetes de gaseosa Concordia de Piña de 03 litros de 04 unidades y paquetes de gaseosa Evervess Ginger de 1,5 litros de 06 unidades. Para ello, se utilizaron modelos de Regresión lineal, LightGBM Regressor y series de tiempo, como SARIMA y FB Prophet, aplicando los enfoques de Forecasting y Regresión. La evaluación de modelos se realizó utilizando métricas como MAE, MAPE y RMSE. Entre los resultados obtenidos, se obtuvo que el modelo FB Prophet registra un MAPE promedio de 24.64, MAE promedio de 685.16 y un RMSE promedio de 1003.90. Este estudio proporciona una base sólida para futuras investigaciones en la aplicación de Machine Learning en la industria de bebidas y demuestra el potencial de estas tecnologías para transformar las operaciones comerciales y mejorar la competitividad en el mercado.Ítem Acceso Abierto Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning(Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria RosaliaDiversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).Ítem Acceso Abierto Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico(Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, SantiagoLa presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.Ítem Acceso Abierto Técnicas de Machine Learning para determinar la producción de cultivos y personal requerido en las campañas de cosecha de la empresa Fundos Rejas SAC(Universidad ESAN, 2022) Briceño Rodríguez, Rafael Isaac; Celedonio Rojas, Marco Antonio; Crisóstomo Fernández, Walter Javier; Medrano Pelaez, Jose Luis; Salas Castillo, Patricia ElizabethDiferentes empresas están utilizando técnicas de Machine Learning para analizar sus conjuntos de datos con la finalidad de encontrar comportamientos y patrones que les permitan crear modelos matemáticos predictivos, que a su vez pueden predecir diferentes variables de salida para determinar la producción y la cantidad de personal requerido para los cultivos de palta, arándano y mandarina. En el presente estudio, se utilizó una base de datos que comprende los años de campañas de cosecha (2019 a 2022). Para ello, la metodología CRISP-DM para obtener un mejor alineamiento en la etapa de desarrollo. Se utilizaron técnicas de aprendizaje supervisado entre ellas Regresión lineal Múltiple, Árbol de Regresión y Vectores de Soporte de Regresión, para medir el modelo que tiene mejor desempeño se utilizaron las métricas como el R2 y RMSE. Dentro de los resultados obtenidos, se obtuvo que, para determinar la producción del cultivo de palta, la mejor técnica fue la de Regresión Lineal Múltiple y para los cultivos de arándano y mandarina fue el Árbol de Regresión, por otro lado, para determinar la cantidad de trabajadores para el cultivo de palta el mejor modelo fue Árbol de Regresión y para los cultivos de mandarina y arándano fue el SVR.Ítem Acceso Abierto Técnicas de Machine Learning para la clasificación automática de clientes en una empresa de seguros(Universidad ESAN, 2021) Asencio Diaz, Luz de los Angeles Manuela; Chiang Cornejo, Ricardo Hernan; Crisóstomo Fernández, Fernanda Lucía; Hernández Quiroz, Gisela Vanesa; Lajo Aurazo, Almendra SofiaMachine Learning y los modelos matemáticos en los que se basa para poder identificar patrones y dar una estimación basada en data histórica son usados cada vez más en diferentes industrias para procesar información que antes se consideraba masiva y por ende difícil de relacionar de manera certera por métodos tradicionales. Con la inclusión de las técnicas de como regresión logística y K-NN, hoy en día es posible formular y proponer un modelo de predicción de aprendizaje supervisado que se ajuste a los requerimientos de clasificación de una empresa. Esta investigación propone la aplicación de las mencionadas técnicas para la elaboración de modelos predictivos de clasificación de tipos de asegurados para una determinada empresa en la industria aseguradora de vehículos automóviles; usando como base de datos los registros históricos recopilados del año 2019.Ítem Acceso Abierto Propuesta de un modelo de machine learning para el pronóstico de la demanda de prendas de vestir en la Corporación Brusko S.A.C.(Universidad ESAN, 2021) Ccoyccosi Choque, Ronald Alberto; Huanay Palomino, Luis Ernesto; Huayllasco Chafloque, Ethel Diana; Loayza Díaz, Vanessa; Mayorga Lopez, Katiuska FiorelaEn el Perú existen muchas empresas a cargo de la compra y venta de bienes (retails), para ellas la determinación de la demanda es crucial ya que esta impacta significativamente en los costos e ingresos que pueden llegar a tener. La presente investigación plantea pronosticar la demanda de los pantalones de caballero de la Corporación Brusko bajo la metodología CRISP-DM y empleando la técnica de regresión lineal. Se trabajó con datos brindados por la empresa (2018 – 2021), con ello se realizó el modelo de pronóstico y se obtuvieron los siguientes RMSE: 23.78 para el año 2018, 13.22 para el año 2019, 47.12 para el año 2020 y 17.87 para el año 2021. Además, se realizó el mismo análisis para la totalidad de años teniendo como resultado un RMSE de 59.07. Los datos presentaron outliers debido a la pandemia; eliminando estos datos atípicos se volvió a correr el modelo para la totalidad de los años obteniendo un RMSE de 29.98, el cual fue mejor comparado al modelo con la totalidad de datos sin outliers. Realizando el análisis de los resultados nos quedamos con el modelo para el año 2019, un año que no presenta outliers y con un adecuado RMSE.