Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning

Miniatura

Enlace externo

Fecha

2023

Título de la revista

ISSN de la revista

Título del volumen

Fecha de fin de embargo

Redes Sociales




Citación

Citación APA

Resumen

Diversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).

Descripción

Palabras clave

Machine learning, Modelos predictivos, Cuencas hidrográficas, Papas, Variables ambientales

Citación

Endorsement

Review

Supplemented By

Referenced By

El item tiene asociados los siguientes ficheros de licencia: Creative Commons

Excepto si se señala otra cosa, la licencia del item se describe como info:eu-repo/semantics/openAccess