Ingeniería Industrial Comercial

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739

Examinar

Resultados de la búsqueda

Mostrando 1 - 10 de 18
  • Miniatura
    ÍtemAcceso Abierto
    Desarrollo de algoritmo de recomendación de SKU para los clientes de Alicorp que cuentan con un canal de atención digital usando técnicas de machine learning
    (Universidad ESAN, 2024) Espinoza Sutta, Milton; Limachi Pampamallco, Ana Isabel; Melo Locumber, Noe; Rodriguez Otiniano, Junior Ricardo; Valencia Cañote, Sebastian
    Saber qué es lo que quiere el cliente es uno de los retos más grandes que afrontan las empresas en la actualidad. En cuanto al uso de tecnología, las nuevas tendencias que aplican soluciones cuyo objetivo es mejorar, de manera incremental, la capacidad de poder recomendar productos o servicios de manera más exacta. No obstante, para identificar lo que desean los clientes, se necesita una base histórica que nos permita comprender sus necesidades y preferencias. Por ello, este trabajo de investigación se enfoca en el desarrollo de un algoritmo de recomendación que, a través del procesamiento de datos, pueda recomendar productos según el perfil del cliente. La investigación utiliza datos de Alicorp, una empresa peruana líder en consumo masivo, con dos millones de transacciones de ventas de clientes como panaderías, restaurantes y bodegas. Se aplicaron técnicas basadas en reglas como RFM y algoritmos de machine learning como Kmeans, LGBM Classifier y LGBM Ranker en la etapa de modelamiento. Para definir el mejor algoritmo se utilizó una medida de recall promedio de clientes de los productos recomendados. La familia de algoritmos LGBM demostró una precisión superior, destacando el LGBM Ranker que logró un impresionante recall de 0.8950.
  • Miniatura
    ÍtemAcceso Abierto
    Mejora del sistema de seguridad y salud para reducir accidentes en un taller automotriz
    (Universidad ESAN, 2024) Alcantara Honores, Carlos Fredy; Caraza Alvarez, Tania Vanessa; Llacza Huaytan, Luis Fernando; Soberon Dueñas, Deborah; Tapia Parra, Miguel Angel
    La investigación se adentra en los desafíos específicos que enfrenta AUTOLAND, una empresa destacada en la industria automotriz peruana, con un enfoque particular en su taller localizado en Surco, Lima. Este taller, esencial para las operaciones de la empresa, ha experimentado una serie de obstáculos debido a la carencia de un sistema de seguridad y salud eficaz. La incidencia de accidentes ha tenido un impacto tangible en la productividad general de la organización. Para abordar esta problemática se ha implementado con determinación el método 5S, una estrategia integral para mejorar las condiciones de seguridad y salud en el entorno laboral. Los resultados obtenidos tras la aplicación de esta metodología son prometedores y reflejan una transformación sustancial en el taller. Este estudio no solo subraya la importancia crítica de invertir en seguridad laboral, sino que también resalta cómo una cultura organizacional centrada en la seguridad puede mejorar significativamente el desempeño de los trabajadores y por consecuencia, impulsar el éxito operativo y comercial de AUTOLAND.
  • Miniatura
    ÍtemAcceso Abierto
    Propuesta de mejora en el área de producción para aumentar la productividad en Intraplast E.I.R.L. aplicando manufactura esbelta
    (Universidad ESAN, 2024) Campos Gutarra, Vania Brigitte; Ore Ichpas, Nayely Mayli; Quezada Castellanos, Alexis Alfredo; Rios Blanco, Felix Andres; Rodriguez Yumpo, Brigitte Tamiko
    La empresa Intraplast E.I.R.L. busca mejorar su posicionamiento en el mercado local a través del incremento en la calidad de sus productos y cumplimiento en el tiempo de entrega a sus clientes. La investigación desarrollada posee como objetivo diagnosticar la situación actual de la empresa; y a través de herramientas de manufactura esbelta, que fueron evaluadas por medio de criterios como factibilidad, costo/ beneficio, impacto y tiempo de implementación, se propone la estandarización de procesos a través del estudio de tiempos, Value Stream Map, mejora del espacio de trabajo a aplicando 5S’s y aplicación de método de mejora continua a través del Ciclo de Deming. Para la simulación, se empleará el software Arena Simulation a fin de visualizar el flujo de proceso, ingresando cantidades y tiempos de producción. Los datos recopilados para desarrollar las propuestas corresponden desde el año 2020 al 2023. Como resultados de la simulación, se obtiene una mejora en indicadores como productividad, tasa de productos defectuosos, tiempo de ciclo, cumplimiento de plazos, tasa de producción y de devoluciones.
  • Miniatura
    ÍtemAcceso Abierto
    Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
    (Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego Alfredo
    Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
  • Miniatura
    ÍtemAcceso Abierto
    Aplicación de modelos de Machine Learning para la planificación de la demanda en la empresa CBC Peruana S.A.C
    (Universidad ESAN, 2023) Maciel Carpio, Zannie Xilena; Salas Barrera, Felipe Alvaro; Sanchez Anticona, Crishtian Sebastian; Sanchez Chacon, Gabriela de los Angeles; Santana Fernandez, Jose Daniel
    La industria de bebidas enfrenta desafíos específicos en la planificación de la demanda, ya que la variabilidad de los patrones de consumo y la imprevisibilidad del cliente exige a las empresas establecer estrategias para satisfacer la demanda. El presente trabajo de investigación se centra en la aplicación de técnicas de Machine Learning para pronosticar la demanda de dos productos clave de la empresa CBC Peruana S.A.C: paquetes de gaseosa Concordia de Piña de 03 litros de 04 unidades y paquetes de gaseosa Evervess Ginger de 1,5 litros de 06 unidades. Para ello, se utilizaron modelos de Regresión lineal, LightGBM Regressor y series de tiempo, como SARIMA y FB Prophet, aplicando los enfoques de Forecasting y Regresión. La evaluación de modelos se realizó utilizando métricas como MAE, MAPE y RMSE. Entre los resultados obtenidos, se obtuvo que el modelo FB Prophet registra un MAPE promedio de 24.64, MAE promedio de 685.16 y un RMSE promedio de 1003.90. Este estudio proporciona una base sólida para futuras investigaciones en la aplicación de Machine Learning en la industria de bebidas y demuestra el potencial de estas tecnologías para transformar las operaciones comerciales y mejorar la competitividad en el mercado.
  • Miniatura
    ÍtemAcceso Abierto
    Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning
    (Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria Rosalia
    Diversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).
  • Miniatura
    ÍtemAcceso Abierto
    Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico
    (Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, Santiago
    La presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.
  • Miniatura
    ÍtemAcceso Abierto
    Diseño de un modelo de predicción de demanda online de paquete de huevos (15 unidades) para una empresa proveedora de productos avícolas en Lima mediante Machine Learning
    (Universidad ESAN, 2023) Cabrera Reyes, Jairo; Camero Veneros, Mario; Castillón Medina, Densel Giomar; Garcia Condori, Guadalupe; García Guzmán, Rony Yeltsin
    Este estudio se enfoca en abordar los desafíos que enfrenta una empresa avícola en Lima (Perú), específicamente en su canal de ventas en línea, destacando la falta de herramientas de inteligencia artificial para prever la demanda de su producto estrella: paquetes de huevos de 15 unidades. La investigación adopta un enfoque experimental con base cuantitativa, entrenando 12 modelos que abarcan desde estadísticos tradicionales hasta avanzados de Machine Learning. La metodología se divide en cuatro pasos clave: extracción de datos, preprocesamiento, modelado y análisis de resultados. El Random Forest, con optimización de hiperparámetros y validación cruzada, se revela como el más eficaz, logrando un RMSE de 38.62 y un MAE de 28.94 que significan una reducción sustancial del 52.16% en MSE y 26.15% en MAE en comparación con un modelo estadístico base (SARIMAX). Además, se propone una optimización en el equipo de planificación, con reducciones significativas en personal (50%) y costos (62.5%). A pesar de los resultados positivos, se recomienda la exploración de modelos más complejos como redes neuronales artificiales y la consideración de la implementación en la nube de Google (GCP) para mejorar continuamente la eficiencia del modelo y adaptarse a las dinámicas cambiantes del mercado.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para incrementar el rendimiento de los campos de caña de azúcar en una empresa agroindustrial
    (Universidad ESAN, 2023) Alcantara Bernal, Francisco Fernando; Mckitting Cornejo, Gerardo Gabriel; Siancas Gutierrez, Susan Aracelly; Zaldívar Valdez, Ana Sofía
    El rápido crecimiento demográfico genera una presión importante sobre la agricultura mundial debido al aumento de la demanda y la reducción de espacios aptos para el cultivo. Esto obliga a que las empresas agroindustriales tengan que obtener mejores rendimientos de cada campo para mantener o aumentar sus niveles de producción. La presente investigación busca complementar los estudios sobre la relación de las variables que afectan el rendimiento de los campos de cultivo de caña de azúcar. El objetivo de este estudio es predecir el porcentaje de sacarosa a obtenerse de un campo de caña de azúcar; para ello, se usaron dos técnicas de aprendizaje supervisado: regresión lineal y regresión vectorial de soporte (SVR), ejecutándose cada una tanto con data normalizada como sin normalizar. Finalmente, se compararon los resultados de cada modelo usando el coeficiente de determinación y raíz del error cuadrático medio. El modelo seleccionado fue el de SVR con kernel RBF y data normalizada, teniendo una precisión del 38.3% y un RMSE de 0.7962 puntos de sacarosa. El potencial que supone el uso de Machine Learning en el sector agroindustrial es muy grande y por ello se deben de seguir desarrollando investigaciones con nuevas variables, técnicas y modelos.
  • Miniatura
    ÍtemAcceso Abierto
    Segmentación de clientes para mejorar la experiencia de compra de productos electrónicos en Falabella
    (Universidad ESAN, 2023) Aragón Gallegos, Angela Del Carmen; Cerquin Silva, Sabina Isabel; Escurra Yactayo, Renzo Omar; Roncalla Viena, Andrea Liliana
    En la presente investigación se pretende encontrar perfiles de consumidores de la empresa Saga Falabella y para esto analizamos las ventas del sector electro de la empresa entre los meses de noviembre del 2022 y enero del 2023, tomando en cuenta campos como el género de los consumidores, marcas de preferencia, categoría de equipos, métodos de pago y unidades vendidas, así como también si las compras fueron efectuadas por internet o en los diferentes locales que esta empresa posee a nivel nacional. Mediante la aplicación de métodos de aprendizaje no supervisado como: clustering jerárquico, K-Means y K-Medoids, se limpió, normalizó y procesó la data, de esta forma se consiguió obtener segmentos de consumidores bien definidos. Se obtuvieron cinco grupos de clientes con diferentes características y preferencias, esto ayudaría a Saga Falabella a enfocar mejor sus estrategias de marketing y de retención de clientes, favoreciendo el aumento de sus ventas y la preferencia de los consumidores por encima de otras empresas del mismo rubro.