Ingeniería Industrial Comercial

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3739

Examinar

Resultados de la búsqueda

Mostrando 1 - 4 de 4
  • Miniatura
    ÍtemEmbargo
    Predicción del tipo de parto en el departamento de ginecología-obstetricia del Hospital Santa Rosa mediante Machine Learning
    (Universidad ESAN, 2023) Perez Garcia, Adams Smith; Seminario Vergaray, Raul Francisco
    En el presente trabajo, se uso Machine Learning en el ámbito de aprendizaje supervizado. para predecir los tipos de partos de las gestante atendidas en el Hospital Santa Rosa, buscando optimizar los recursos de la institución tanto material como humano. Para la creación del Modelo se recopiló toda la información existente en el hospital santa rosa y el ministerio de salud (Minsa) mediante un cruce de información, luego de la limpieza de datos, se utilizo el 80% para el aprendizaje y uN 20% para la para corroborar la predicción. El modelo predominante para nuestro trabajo fue el Árbol de decisión, donde se identifico la variable y ( tipos de partos existentes) y las variables x ( diagnosticas por lo que existe complicaciones durante el parto). con lo cual el modelo se pudo recrear.
  • Miniatura
    ÍtemAcceso Abierto
    Aplicación de modelos de Machine Learning para la planificación de la demanda en la empresa CBC Peruana S.A.C
    (Universidad ESAN, 2023) Maciel Carpio, Zannie Xilena; Salas Barrera, Felipe Alvaro; Sanchez Anticona, Crishtian Sebastian; Sanchez Chacon, Gabriela de los Angeles; Santana Fernandez, Jose Daniel
    La industria de bebidas enfrenta desafíos específicos en la planificación de la demanda, ya que la variabilidad de los patrones de consumo y la imprevisibilidad del cliente exige a las empresas establecer estrategias para satisfacer la demanda. El presente trabajo de investigación se centra en la aplicación de técnicas de Machine Learning para pronosticar la demanda de dos productos clave de la empresa CBC Peruana S.A.C: paquetes de gaseosa Concordia de Piña de 03 litros de 04 unidades y paquetes de gaseosa Evervess Ginger de 1,5 litros de 06 unidades. Para ello, se utilizaron modelos de Regresión lineal, LightGBM Regressor y series de tiempo, como SARIMA y FB Prophet, aplicando los enfoques de Forecasting y Regresión. La evaluación de modelos se realizó utilizando métricas como MAE, MAPE y RMSE. Entre los resultados obtenidos, se obtuvo que el modelo FB Prophet registra un MAPE promedio de 24.64, MAE promedio de 685.16 y un RMSE promedio de 1003.90. Este estudio proporciona una base sólida para futuras investigaciones en la aplicación de Machine Learning en la industria de bebidas y demuestra el potencial de estas tecnologías para transformar las operaciones comerciales y mejorar la competitividad en el mercado.
  • Miniatura
    ÍtemAcceso Abierto
    Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning
    (Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria Rosalia
    Diversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).
  • Miniatura
    ÍtemEmbargo
    Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la estrategia de ventas de productos de bebidas en el departamento de Ica
    (Universidad ESAN, 2023) Alikhan Trujillo, Kledy Fiorella; Aspiazu Neyra, Luis Eduardo; Auccapiña Guillen, Juan Abner; Ayna Benegas, Irene; Cardenas Pijo, Melisa Consuelo
    La investigación se centra en el mercado de bebidas en el departamento de Ica, con el objetivo de automatizar la segmentación de clientes y, por consiguiente, mejorar las estrategias comerciales de ventas. Al implementar las fases de la metodología, las primeras etapas se dedicarán al procesamiento y tratamiento riguroso de los datos, preparando así el terreno para la construcción del modelo en la fase subsiguiente. Se emplearán técnicas de aprendizaje no supervisado de Machine Learning, como K-Means, K-Medoids, Agrupación Jerárquica, DBSCAN y HDBSCAN, con parámetros óptimos. En las últimas fases, se realizarán las agrupaciones de perfiles de tipo clúster basándose en un análisis detenido de la información recopilada y las variables pertinentes. El resultado será un reporte consolidado que proporcionará una visión detallada por cada perfil de cliente. Con esta información clave el gestor comercial de ventas podrá tomar decisiones comerciales estratégicas sobre ventas. De forma complementaria, se realizará una validación con un experto del rubro para verificar el tipo de clúster adecuado como candidato óptimo de la automatización de la segmentación de clientes.