Facultad de Ingeniería

URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3729

Examinar

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Miniatura
    ÍtemRestringido
    Desarrollo de un modelo de RFM y técnicas de clustering para la segmentación de clientes en una empresa de bienes de consumo masivo
    (Universidad ESAN, 2024) Toledo Rios, Julynho Merlin; Delgado Lorino, Alonso; Bazan Arzapalo, Jean Pablo; Garcia Quispe, Guerel Orlando; Canorio Ochoa, Diego Antonio
    La implementación de modelos de clustering para la segmentación de clientes en empresas de bienes de consumo masivo es una estrategia fundamental en la comprensión del comportamiento del consumidor y en la mejora de las relaciones con estos. Esta investigación aborda la aplicación de un modelo de RFM y técnicas de clustering, en una empresa peruana líder en el sector de bienes de consumo masivo. El objetivo principal es reconocer los patrones de compra y la clasificación de clientes en grupos homogéneos basándose en variables clave como recencia, frecuencia y valor monetario de las compras. Utilizando métodos de aprendizaje automático no supervisado, como k-means, BIRCH y Gaussian Mixture Model, se procesan y analizan grandes volúmenes de datos para lograr una segmentación efectiva. Esta segmentación permitiría a la empresa dirigir sus esfuerzos de marketing de manera más precisa y desarrollar estrategias personalizadas para cada grupo de clientes. Los resultados obtenidos revelan patrones de compra significativos y sugieren que una segmentación cuidadosa puede proporcionar información valiosa para la formulación de decisiones estratégicas, contribuyendo al crecimiento y competitividad de la empresa en el mercado de bienes de consumo masivo.
  • Miniatura
    ÍtemRestringido
    Propuesta de mejora en la gestión de inventarios para incrementar la rentabilidad de Multimedical Supplies SAC mediante innovación tecnológica incremental
    (Universidad ESAN, 2024) Aucca Zuñiga, Dayana Nashly; Cabezas Chavez, Paulo Cesar; Cozar Yaranga, Anthony Jhimy; Diaz Silva, Yazuly Meyleen; Valdivia Solis, Diego Wilder
    El presente trabajo tiene como finalidad brindar una propuesta de mejora en la gestión de inventarios que permita incrementar la rentabilidad de Multimedical Supplies S.A.C.; donde se aplicará innovación incremental. La investigación posee un enfoque cuantitativo, de alcance explicativo y diseño no experimental de tipo transversal, debido a que se analizaron datos numéricos correspondientes al periodo 2017-2023 que permitieron identificar los problemas y sus causas. La metodología propuesta para estructurar la solución es DMAIC. Esta consiste en la innovación del proceso de reposición mediante su automatización con el uso de business intelligence que permitirá un correcto análisis de la información del inventario total aplicando formulación correspondiente al sistema P y clasificación ABC en Excel, y la visualización de indicadores de gestión relevantes mediante un dashboard en Power BI para realizar un monitoreo y control de los inventarios en tiempo real que a su vez proporcionará información confiable para la toma de decisiones. Finalmente, se obtiene como resultado de la propuesta que se tuvo un incremento de 17.21% en el nivel de servicio, 1.29 en el índice de rotación y 11% en el margen bruto, que denota la efectividad de la propuesta para cumplir el objetivo plasmado.
  • Miniatura
    ÍtemRestringido
    Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C
    (Universidad ESAN, 2022) Trujillo Grados, Alexandra Cecil; Meza Arismendis, Carmen Rosa; Calero Lazaro, Darwin Rubens; Huaman Avellaneda, Grecia Patricia; Palma Abanto, Katherine Violeta
    Un suceso fortuito como la pandemia genera retrasos importantes y costos logísticos adicionales, este evento termina evidenciando la mala planificación en la logística de las empresas. El presente trabajo busca complementar los escasos estudios enfocados en las variables que puedan afectar al tiempo de tránsito para el desarrollo de una mejor planificación organizacional. El objetivo de esta investigación es la predicción de tiempos de tránsito y determinación de entrega a tiempo en los embarques marítimos, a través del uso de 4 algoritmos del aprendizaje supervisado de Machine Learning. Para la predicción de tiempos de tránsito, se obtuvo un error absoluto medio (MAE) de 8.58 con un coeficiente de determinación (R²) de 0.3190 en el algoritmo de regresión lineal, obteniendo como variable más influyente “puerto de destino”, y en la determinación de entrega a tiempo se halló que el algoritmo KNN vecinos más cercanos genera el mejor pronóstico en comparación de la regresión logística, SVC y Naive Bayes, con un 67,38% de precisión. El uso de estas técnicas sienta una base para futuros estudios comparativos de los algoritmos de Machine Learning en el pronóstico de tiempos de tránsito en la logística internacional.
  • Miniatura
    ÍtemRestringido
    Modelo de Machine Learning para la segmentación automática de clientes según su perfil de compra del canal de venta interna en Molitalia
    (Universidad ESAN, 2021) Bernuy Murriel, Astrid Carolina; Manza Briceño, Mirella Maribel; Garay Macukachi, Jessica Diyanira; Guillen Aguilar, Yomira Alizon; Juarez Polar, Jefry Romulo
    Debido al COVID-19, la empresa Molitalia redujo sus ventas en los canales internos y externos, esto se debe a que los consumidores han reducido su poder de compra en las categorías de alimentos; por lo cual, Molitalia se ve obligada a mapear soluciones y estrategias que se adapten al nuevo entorno. Siendo uno de los hallazgos la poca capacidad de respuesta a las exigencias y preferencias de los clientes internos. Por ello, este proyecto se centró en el desarrollo de un modelo de segmentación automática de perfiles de compra de los clientes internos, con ello se podrá implementar estrategias que se adapten a las necesidades de los clientes, responder rápidamente a los cambios en la demanda, contar con información a tiempo real del perfil de compra del cliente, agilizar y fortalecer los procesos de venta para beneficio de la organización.Para ello, se desarrollaron diez modelos de Machine Learning usando la técnica de aprendizaje no supervisado “K-Means”. Además, se analizaron y evaluaron los modelos mediante dos validaciones: teórica, mediante el indicador “inercia”; y práctica, por medio del experto de estrategia comercial. Concluyendo que el mejor modelo es el K=4, logrando descubrir cuatro perfiles de clientes internos: Beginners, Middle, Expert, Senior.
  • Miniatura
    ÍtemRestringido
    Las capacidades dinámicas y su influencia en la innovación de productos para mejorar el desempeño financiero en las Pymes
    (Universidad ESAN, 2020) Cruz Solórzano, Dana Cristina; Oncoy Tahua, Estephanie Pamela; Pacheco Olivera, Daniela; Salazar De La Cuba, José Alonso; Urquizo Ayala, Milagros Helena
    La mayor parte de las Pymes presenta debilidades de carácter estructural lo cual disminuye su competitividad y condicionan su capacidad de supervivencia y crecimiento. En un entorno cambiante, en el que existe una rápida evolución tecnológica y una mayor competencia en los mercados es necesarios ajustes en los recursos y capacidades de la organización para lograr procesos y productos innovadores, así como crear, mantener y apropiarse de los beneficios potenciales que generan ventajas competitivas sostenibles. En este estudio de investigación se busca analizar a la PyMES y cómo mejorar su rendimiento para poder responder de una manera adecuada a las cambiantes necesidades del mercado. Es así que se propone una correlación positiva entre las capacidades dinámicas de las empresas, y cómo estas se ven influenciadas por un entorno VUCA, además, se plantea nuevos y profundos desafíos por lo cual cada organización responderá y optará por las estrategias y decisiones que considere correctas. Finalmente se propone la relación positiva entre innovación de productos en PyMES y cómo éstas ayudarían a tener ventaja competitiva para que de esta manera pueda generar un mejor desempeño financiero.
  • Miniatura
    ÍtemRestringido
    La cultura organizacional y su influencia en el proceso de toma de decisiones de las MYPES familiares de Lima Metropolitana
    (Universidad ESAN, 2020) Castillo Gallo, Susan Alexandra; Lavado Benavides, Jesús André; Lovera Pineda, Claudia Carolina; Roncal Bazan, Carlos Fernando; Sánchez Mendoza, Emily Alessandra
    En el Perú, alrededor del 80% de las empresas existentes son de origen familiar y aportan el 40% de PBI. Dentro de la mayoría de las familias peruanas hay una cabeza o un proveedor quien tiende a ser el líder de la empresa y cuyas decisiones determinan la cultura y el desempeño (rentabilidad) de la misma. Sin embargo, no se puede deducir a priori si la cultura organizacional afecta o influye sobre las decisiones de los líderes de empresas familiares, es por eso que en este estudio se busca determinar cómo la cultura organizacional de las diferentes empresas MYPES familiares de Lima Metropolitana guarda una relación con el proceso de toma de decisiones dentro de las mismas. Para responder a este problema, se buscará determinar si la comunicación, el aprendizaje y desarrollo, la diversidad cultural, el trabajo en equipo y la confianza, obligación y cohesión tienen una influencia significativa sobre la toma de decisiones. Este estudio presenta dos tipos de metodología de investigación, la observacional y la correlacional, ambas se trabajan con una muestra de 30 MYPES familiares en Lima Metropolitana. Luego de la implementación de la metodología se espera evidenciar la influencia de la cultura organizacional sobre el proceso de tomas de decisiones, sin embargo, se podría obtener resultados negativos ya que es muy probable que las decisiones tomadas por el líder o cabeza de familia sean totalmente personales y que no exista una cultura organizacional establecida.