Desarrollo de un modelo de RFM y técnicas de clustering para la segmentación de clientes en una empresa de bienes de consumo masivo

Miniatura

Enlace externo

Fecha

2024

Título de la revista

ISSN de la revista

Título del volumen

Fecha de fin de embargo

Redes Sociales




Citación

Citación APA

Resumen

La implementación de modelos de clustering para la segmentación de clientes en empresas de bienes de consumo masivo es una estrategia fundamental en la comprensión del comportamiento del consumidor y en la mejora de las relaciones con estos. Esta investigación aborda la aplicación de un modelo de RFM y técnicas de clustering, en una empresa peruana líder en el sector de bienes de consumo masivo. El objetivo principal es reconocer los patrones de compra y la clasificación de clientes en grupos homogéneos basándose en variables clave como recencia, frecuencia y valor monetario de las compras. Utilizando métodos de aprendizaje automático no supervisado, como k-means, BIRCH y Gaussian Mixture Model, se procesan y analizan grandes volúmenes de datos para lograr una segmentación efectiva. Esta segmentación permitiría a la empresa dirigir sus esfuerzos de marketing de manera más precisa y desarrollar estrategias personalizadas para cada grupo de clientes. Los resultados obtenidos revelan patrones de compra significativos y sugieren que una segmentación cuidadosa puede proporcionar información valiosa para la formulación de decisiones estratégicas, contribuyendo al crecimiento y competitividad de la empresa en el mercado de bienes de consumo masivo.

Descripción

Palabras clave

Aprendizaje automático, Segmentación del mercado, Comportamiento del consumidor, Empresas comerciales

Citación

Endorsement

Review

Supplemented By

Referenced By