Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C
dc.contributor.advisor | Fabian Arteaga, Junior John | |
dc.contributor.author | Trujillo Grados, Alexandra Cecil | |
dc.contributor.author | Meza Arismendis, Carmen Rosa | |
dc.contributor.author | Calero Lazaro, Darwin Rubens | |
dc.contributor.author | Huaman Avellaneda, Grecia Patricia | |
dc.contributor.author | Palma Abanto, Katherine Violeta | |
dc.coverage.spatial | Perú | |
dc.date.accessioned | 2022-11-11T14:45:20Z | |
dc.date.available | 2022-11-11T14:45:20Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Un suceso fortuito como la pandemia genera retrasos importantes y costos logísticos adicionales, este evento termina evidenciando la mala planificación en la logística de las empresas. El presente trabajo busca complementar los escasos estudios enfocados en las variables que puedan afectar al tiempo de tránsito para el desarrollo de una mejor planificación organizacional. El objetivo de esta investigación es la predicción de tiempos de tránsito y determinación de entrega a tiempo en los embarques marítimos, a través del uso de 4 algoritmos del aprendizaje supervisado de Machine Learning. Para la predicción de tiempos de tránsito, se obtuvo un error absoluto medio (MAE) de 8.58 con un coeficiente de determinación (R²) de 0.3190 en el algoritmo de regresión lineal, obteniendo como variable más influyente “puerto de destino”, y en la determinación de entrega a tiempo se halló que el algoritmo KNN vecinos más cercanos genera el mejor pronóstico en comparación de la regresión logística, SVC y Naive Bayes, con un 67,38% de precisión. El uso de estas técnicas sienta una base para futuros estudios comparativos de los algoritmos de Machine Learning en el pronóstico de tiempos de tránsito en la logística internacional. | es_ES |
dc.format | application/pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.12640/3236 | |
dc.language | Español | |
dc.language.iso | spa | |
dc.publisher | Universidad ESAN | es_ES |
dc.publisher | Universidad ESAN | |
dc.publisher.country | PE | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Logística | es_ES |
dc.subject | Aprendizaje automático | es_ES |
dc.subject | Distribución del tiempo | es_ES |
dc.subject | Transporte marítimo | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.07.00 | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.11.04 | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#5.02.04 | |
dc.title | Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type.other | Trabajo de suficiencia profesional | |
local.acceso.esan | Acceso restringido | |
renati.advisor.dni | 44749148 | |
renati.advisor.orcid | https://orcid.org/0000-0001-9804-7795 | |
renati.author.dni | 72896517 | |
renati.author.dni | 76536506 | |
renati.author.dni | 71230327 | |
renati.author.dni | 45760572 | |
renati.author.dni | 70022806 | |
renati.discipline | 722056 | |
renati.discipline | 521236 | |
renati.juror | Ballon Alvarez, Eber Joseph | |
renati.juror | Calderón Niquín, Marks Arturo | |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | |
renati.type | https://purl.org/pe-repo/renati/type#trabajoDeSuficienciaProfesional | |
thesis.degree.discipline | Ingeniería Industrial y Comercial | |
thesis.degree.discipline | Ingeniería en Gestión Ambiental | |
thesis.degree.grantor | Universidad ESAN. Facultad de Ingeniería | |
thesis.degree.name | Ingeniero Industrial y Comercial | |
thesis.degree.name | Ingeniero en Gestión Ambiental |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: