Ingeniería en Gestión Ambiental
URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3738
Examinar
Ítem Acceso Abierto Mejora del proceso de disposición de productos observados en el área de Aseguramiento de Calidad de una empresa PET usando técnicas de machine learning(Universidad ESAN, 2022) Ore Vargas, Jorge Humberto; Pinedo Chávez, Luis Alonso; Ramírez Núñez, Karen Andrea; Sullón Cabello, Claudia Noelia; Villanueva Méndez, Martín JesúsLa industria de empaques rígidos es un sector altamente competitivo en temas de calidad y precio en el Perú y el mundo. Es por ello, que se requiere que las empresas optimicen el uso de sus recursos para poder ofrecer lo que el mercado demanda. El presente trabajo plantea mejorar el proceso de disposición de productos observados en el área de Aseguramiento de Calidad a través de un modelo predictivo, resultante de la aplicación de técnicas de machine learning y así disminuir los tiempos que actualmente se emplean en este proceso. Estas técnicas son K-NN (k-Nearest Neighbors), Máquinas de soporte vectorial (SVM), Naive Bayes y Árbol de decisiones. Para su entrenamiento se usó data histórica de los años 2021 y 2022 la cual fue tratada y definida en conjunto con los especialistas. Como resultado de la evaluación del Accuracy de cada modelo, se pudo concluir que el más preciso es el Árbol de decisiones, la cual podrá ser aplicada a futuro en la empresa para contribuir con la mejora del proceso.Ítem Restringido Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C(Universidad ESAN, 2022) Trujillo Grados, Alexandra Cecil; Meza Arismendis, Carmen Rosa; Calero Lazaro, Darwin Rubens; Huaman Avellaneda, Grecia Patricia; Palma Abanto, Katherine VioletaUn suceso fortuito como la pandemia genera retrasos importantes y costos logísticos adicionales, este evento termina evidenciando la mala planificación en la logística de las empresas. El presente trabajo busca complementar los escasos estudios enfocados en las variables que puedan afectar al tiempo de tránsito para el desarrollo de una mejor planificación organizacional. El objetivo de esta investigación es la predicción de tiempos de tránsito y determinación de entrega a tiempo en los embarques marítimos, a través del uso de 4 algoritmos del aprendizaje supervisado de Machine Learning. Para la predicción de tiempos de tránsito, se obtuvo un error absoluto medio (MAE) de 8.58 con un coeficiente de determinación (R²) de 0.3190 en el algoritmo de regresión lineal, obteniendo como variable más influyente “puerto de destino”, y en la determinación de entrega a tiempo se halló que el algoritmo KNN vecinos más cercanos genera el mejor pronóstico en comparación de la regresión logística, SVC y Naive Bayes, con un 67,38% de precisión. El uso de estas técnicas sienta una base para futuros estudios comparativos de los algoritmos de Machine Learning en el pronóstico de tiempos de tránsito en la logística internacional.Ítem Acceso Abierto Propuesta de optimización del flujo de información en la cadena de suministros de una empresa minera para la mejora de la efectividad en el proceso de movilización de personal mediante el uso de Lean Information Management(Universidad ESAN, 2022) Curi Reyes, Alexander; Becerra Bisso, Jose Salvador; Ramos Moscoso, Angelica Maria; Valladolid Paredes, Oscar Enrique; Vilchez Roman, Alexandra EstefaniaEl presente trabajo está enfocado en proponer optimización del flujo de información por medio de la identificación de desperdicios usando Lean Information Management. El Lean Information Management describe tanto una metodología enfocada en la identificación de desperdicios dentro de los flujos de información de los procesos de la organización como la posibilidad de reducir los tiempos de entrega y mejorar el procesamiento de la información. De esta manera, en el trabajo se evidencia cómo esta filosofía es pertinente tanto para contingencias que demanden procesamiento y tratado de información en contextos como los recientes de pandemia o en cualquiera en el que se halle una empresa en un ambiente de crecientes cambios y exigencias burocráticas. En ese sentido, la presente investigación tiene como objetivo corregir las deficiencias del flujo de información que generan sobre costos y tiempos de entrega no óptimos en el proceso de movilización de personal de una empresa minera. Y así, proporcionar una solución que ayude a mejorar la disponibilidad de información en el momento, estandarizar la elaboración y/o tratamiento de información y entregables con la finalidad de reducir los tiempos de espera y minimizar sobre procesos, duplicidad documentaria y asegurar la disponibilidad de información.Ítem Acceso Abierto Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la experiencia de compra mediante un sistema de recomendación de productos de Tottus(Universidad ESAN, 2022) Atencio Manyari, Stefany Anyela; De la Rosa Flores, Harold; Hilario Maravi, Sayuri; Navarro Huarcaya, Margareth; Rosas Vivanco, Dianaluz MilagrosActualmente, el constante cambio en los factores externos como la tecnología, el mercado, y ahora la pandemia global están obligando a las empresas del sector retail a buscar diferentes estrategias de venta para mejorar la experiencia de compra de sus clientes y así obtener mejores beneficios. Por ello, este trabajo busca segmentar a los clientes a través de la aplicación de técnicas de Machine Learning para crear un sistema de recomendación de productos personalizados de acuerdo con las características a la cual pertenece cada cliente y así mejorar la experiencia de compra agilizando y facilitando el proceso desde el aplicativo móvil de la empresa. La propuesta de segmentación se realizó aplicando para el preprocesamiento de los datos el método estadístico de PCA y se modeló mediante tres técnicas de aprendizaje no supervisado: K-means, K-medoids y Clustering Jerárquico. Estas técnicas se evaluaron de forma teórica considerando el método del codo y el dendograma los cuales resultaron en K grupos óptimos. Finalmente, para validarlo de forma práctica, se solicitó la evaluación de un experto de la empresa quien mediante una entrevista comparó los resultados de las técnicas y escogió a K-medoids como la segmentación más adecuada para el negocio.Ítem Acceso Abierto Técnicas de Machine Learning para la predicción del caudal efluente de la represa Condoroma(Universidad ESAN, 2023) Encina Dávila, Astrid Floria Milagritos; Pacheco Hinojoza, Mirella Alejandra; Vargas Martell, Vannia GiovanaDistintos estudios están empleando técnicas de Machine Learning para el análisis de datos para hallar comportamientos que posibiliten crear modelos matemáticos predictivos y pronosticar diversas variables de salida. En este sentido, el presente trabajo de investigación se enfoca en los esfuerzos realizados para predecir el caudal efluente en la represa Condoroma, perteneciente a la Autoridad Autónoma de Majes (Autodema), donde se incluye el uso de técnicas de aprendizaje supervisado. Para ello, se utiliza una base de datos abiertos de dos plataformas de Autodema: Movimiento Hídrico Sistema Colca y Meteorología Represas. Estos datos históricos son resultados de mediciones mensuales del sistema de monitoreo del recurso hídrico. Además, se manejan para entrenar los modelos Regresión Lineal, Regresión de Vectores de Soporte (SVR) y ARIMA; asimismo, se utilizaron métricas como el MAE, MSE, RMSE y varianza para medir el modelo con el mejor rendimiento. Con base en los resultados obtenidos, se determinó que para predecir el caudal efluente de la represa Condoroma la mejor técnica fue la de SVR que obtuvo un MAE de 5.536, un MSE de 83.701, un RMSE de 9.145 y una varianza igual a 0.427.