Ingeniería en Gestión Ambiental

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3738

Examinar

Resultados de la búsqueda

Mostrando 1 - 3 de 3
  • Miniatura
    ÍtemRestringido
    Técnicas de machine learning para la mejora del método de proyección de ventas de los análisis de multirresiduos de plaguicidas en alimentos de Mérieux Nutrisciences
    (Universidad ESAN, 2023) Huisacayna Cutipa, Abigail Nelly; Jacinto Martell, Samuel Humberto; La Rosa Gadea, Marghore Susana; Machuca Abanto, Axl Boris; Torres Yupanqui, Rocio del Pilar Lesly
    En la actualidad es importante que toda empresa realice pronósticos de todo tipo, que ayuden a mitigar el impacto negativo y/o aprovechar los impactos positivos que los cambios generan. El propósito del presente trabajo es identificar la técnica del aprendizaje automático que mejore el método de proyección de ventas generadas por el análisis de multirresiduos de plaguicidas en alimentos de la empresa Mérieux Nutrisciences. Se emplea la metodología Cross-Industry Standard Process for Data Mining (CRISP-DM) para determinar el modelo predictivo óptimo para la empresa. Después de adquirir y adecuar la data, se aplica y analiza en las técnicas de regresión lineal, light gradient boosting machine (LightGBM), seasonal auto regressive integrated moving average (SARIMA) y long short-term memory (LSTM). Con la ejecución de los modelos establecidos, se concluyó que el uso de modelos predictivos permite a las empresas, tomar decisiones más acertadas y mejorar su gestión, además, se visualizó que el modelo LightGBM tiene una mayor precisión que los otros modelos con un 0.0152 de mean squared error (MSE). Se recomienda realizar el modelado con un mayor número de data para generar un pronóstico más preciso, contrastar con el laboratorio y realizar estudios adicionales para ajustar hiperparámetros propios del modelo.
  • Miniatura
    ÍtemEmbargo
    Implementación de un modelo de Machine Learning para la predicción de la demanda de muebles de sala en la empresa Mallhogar.com
    (Universidad ESAN, 2023) Chipana De La Cruz, David Ismael; Chugnas Sebastian, Analy Sandy; Chupillón Bautista, Yarelis Nicole; Guzmán Ramos, Pedro Jesús; Huancaya Rivas, Hasdaly Anjely
    La empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción, gestionar sus inventarios y agilizar la distribución de productos terminados. Para lograrlo se recopiló información de datos históricos de venta del periodo 2020-2023, se aplicó modelos de Machine Learning, en cinco tipos de muebles de sala. Los modelos de predicción que se emplearon fueron Regresión Lineal, CatBoost, XGBoost y LightGBM. Los resultados fueron evaluados comparando métricas como el Factor de determinación, Error Cuadrático Medio y Raíz del Error Cuadrático Medio, se analizó cómo el modelo se ajusta a los datos de entrenamiento con sus posibles limitaciones. Los experimentos realizados mostraron que los modelos LightGBM y XGBoost tuvieron mejores resultados con una ligera superioridad en comparación a los otros modelos, lo cual se vio reflejado en todos los modelos de muebles analizados, al final se obtuvo la predicción de muebles a vender para los meses de diciembre del 2023, enero del 2024 y febrero del 2024.
  • Miniatura
    ÍtemRestringido
    Pronóstico de tiempos de tránsito marítimos y probabilidad de entrega a tiempo usando algoritmos de Machine Learning en el operador logístico Expeditors Perú S.A.C
    (Universidad ESAN, 2022) Trujillo Grados, Alexandra Cecil; Meza Arismendis, Carmen Rosa; Calero Lazaro, Darwin Rubens; Huaman Avellaneda, Grecia Patricia; Palma Abanto, Katherine Violeta
    Un suceso fortuito como la pandemia genera retrasos importantes y costos logísticos adicionales, este evento termina evidenciando la mala planificación en la logística de las empresas. El presente trabajo busca complementar los escasos estudios enfocados en las variables que puedan afectar al tiempo de tránsito para el desarrollo de una mejor planificación organizacional. El objetivo de esta investigación es la predicción de tiempos de tránsito y determinación de entrega a tiempo en los embarques marítimos, a través del uso de 4 algoritmos del aprendizaje supervisado de Machine Learning. Para la predicción de tiempos de tránsito, se obtuvo un error absoluto medio (MAE) de 8.58 con un coeficiente de determinación (R²) de 0.3190 en el algoritmo de regresión lineal, obteniendo como variable más influyente “puerto de destino”, y en la determinación de entrega a tiempo se halló que el algoritmo KNN vecinos más cercanos genera el mejor pronóstico en comparación de la regresión logística, SVC y Naive Bayes, con un 67,38% de precisión. El uso de estas técnicas sienta una base para futuros estudios comparativos de los algoritmos de Machine Learning en el pronóstico de tiempos de tránsito en la logística internacional.