Trabajos de suficiencia profesional
URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3726
Examinar
20 resultados
Resultados de la búsqueda
Ítem Restringido Desarrollo de un modelo de RFM y técnicas de clustering para la segmentación de clientes en una empresa de bienes de consumo masivo(Universidad ESAN, 2024) Toledo Rios, Julynho Merlin; Delgado Lorino, Alonso; Bazan Arzapalo, Jean Pablo; Garcia Quispe, Guerel Orlando; Canorio Ochoa, Diego AntonioLa implementación de modelos de clustering para la segmentación de clientes en empresas de bienes de consumo masivo es una estrategia fundamental en la comprensión del comportamiento del consumidor y en la mejora de las relaciones con estos. Esta investigación aborda la aplicación de un modelo de RFM y técnicas de clustering, en una empresa peruana líder en el sector de bienes de consumo masivo. El objetivo principal es reconocer los patrones de compra y la clasificación de clientes en grupos homogéneos basándose en variables clave como recencia, frecuencia y valor monetario de las compras. Utilizando métodos de aprendizaje automático no supervisado, como k-means, BIRCH y Gaussian Mixture Model, se procesan y analizan grandes volúmenes de datos para lograr una segmentación efectiva. Esta segmentación permitiría a la empresa dirigir sus esfuerzos de marketing de manera más precisa y desarrollar estrategias personalizadas para cada grupo de clientes. Los resultados obtenidos revelan patrones de compra significativos y sugieren que una segmentación cuidadosa puede proporcionar información valiosa para la formulación de decisiones estratégicas, contribuyendo al crecimiento y competitividad de la empresa en el mercado de bienes de consumo masivo.Ítem Acceso Abierto Desarrollo de algoritmo de recomendación de SKU para los clientes de Alicorp que cuentan con un canal de atención digital usando técnicas de machine learning(Universidad ESAN, 2024) Espinoza Sutta, Milton; Limachi Pampamallco, Ana Isabel; Melo Locumber, Noe; Rodriguez Otiniano, Junior Ricardo; Valencia Cañote, SebastianSaber qué es lo que quiere el cliente es uno de los retos más grandes que afrontan las empresas en la actualidad. En cuanto al uso de tecnología, las nuevas tendencias que aplican soluciones cuyo objetivo es mejorar, de manera incremental, la capacidad de poder recomendar productos o servicios de manera más exacta. No obstante, para identificar lo que desean los clientes, se necesita una base histórica que nos permita comprender sus necesidades y preferencias. Por ello, este trabajo de investigación se enfoca en el desarrollo de un algoritmo de recomendación que, a través del procesamiento de datos, pueda recomendar productos según el perfil del cliente. La investigación utiliza datos de Alicorp, una empresa peruana líder en consumo masivo, con dos millones de transacciones de ventas de clientes como panaderías, restaurantes y bodegas. Se aplicaron técnicas basadas en reglas como RFM y algoritmos de machine learning como Kmeans, LGBM Classifier y LGBM Ranker en la etapa de modelamiento. Para definir el mejor algoritmo se utilizó una medida de recall promedio de clientes de los productos recomendados. La familia de algoritmos LGBM demostró una precisión superior, destacando el LGBM Ranker que logró un impresionante recall de 0.8950.Ítem Acceso Abierto Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito(Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego AlfredoDiferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.Ítem Restringido Técnicas de machine learning para la mejora del método de proyección de ventas de los análisis de multirresiduos de plaguicidas en alimentos de Mérieux Nutrisciences(Universidad ESAN, 2023) Huisacayna Cutipa, Abigail Nelly; Jacinto Martell, Samuel Humberto; La Rosa Gadea, Marghore Susana; Machuca Abanto, Axl Boris; Torres Yupanqui, Rocio del Pilar LeslyEn la actualidad es importante que toda empresa realice pronósticos de todo tipo, que ayuden a mitigar el impacto negativo y/o aprovechar los impactos positivos que los cambios generan. El propósito del presente trabajo es identificar la técnica del aprendizaje automático que mejore el método de proyección de ventas generadas por el análisis de multirresiduos de plaguicidas en alimentos de la empresa Mérieux Nutrisciences. Se emplea la metodología Cross-Industry Standard Process for Data Mining (CRISP-DM) para determinar el modelo predictivo óptimo para la empresa. Después de adquirir y adecuar la data, se aplica y analiza en las técnicas de regresión lineal, light gradient boosting machine (LightGBM), seasonal auto regressive integrated moving average (SARIMA) y long short-term memory (LSTM). Con la ejecución de los modelos establecidos, se concluyó que el uso de modelos predictivos permite a las empresas, tomar decisiones más acertadas y mejorar su gestión, además, se visualizó que el modelo LightGBM tiene una mayor precisión que los otros modelos con un 0.0152 de mean squared error (MSE). Se recomienda realizar el modelado con un mayor número de data para generar un pronóstico más preciso, contrastar con el laboratorio y realizar estudios adicionales para ajustar hiperparámetros propios del modelo.Ítem Acceso Abierto Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico(Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, SantiagoLa presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.Ítem Embargo Desarrollo de un modelo de Machine Learning para la clasificación de clientes siniestrosos de seguro vehicular en la compañía aseguradora MAPFRE Perú(Universidad ESAN, 2023) Mariluz Saavedra, Julio Alejandro; Torres Ricalde, Luz Edith; Velazco Guerrero, MelissaLas últimas innovaciones tecnológicas, como Big Data o Maching Learning, están transformando la forma en cómo se desempeñan las compañías en casi todos los sectores, incluyendo el rubro asegurador. Este estudio se centra en la incorporación de técnicas de Machine Learning en MAPFRE Perú para desarrollar un modelo predictivo que permita identificar a los clientes con mayor probabilidad de sufrir un siniestro vehicular. El objetivo es optimizar el control de los gastos asociados a estos incidentes en la empresa. Para determinar el modelo más optimo se utilizaron cinco diferentes algoritmos de aprendizaje supervisado: Logistic regression, Linear Support Vector Machine, k-Nearest Neighbors, Classification and Regression Tree y Random Forest. Finalmente, para comparar los resultados de cada modelo se utilizaron las métricas del "accuracy" y el "F1-score". El modelo seleccionado fue Random Forest, con el cual se obtuvo un buen rendimiento con el conjunto de datos preprocesado “dfL4”, teniendo un “accuracy” del 82.97% y un “F1-score” del 75.67%. El potencial que implica la aplicación de Machine Learning en la industria aseguradora es considerable, por lo que es esencial continuar avanzando en investigaciones que incorporen nuevas variables, técnicas y modelos para seguir aprovechando sus beneficios.Ítem Embargo Implementación de un modelo de Machine Learning para la predicción de la demanda de muebles de sala en la empresa Mallhogar.com(Universidad ESAN, 2023) Chipana De La Cruz, David Ismael; Chugnas Sebastian, Analy Sandy; Chupillón Bautista, Yarelis Nicole; Guzmán Ramos, Pedro Jesús; Huancaya Rivas, Hasdaly AnjelyLa empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción, gestionar sus inventarios y agilizar la distribución de productos terminados. Para lograrlo se recopiló información de datos históricos de venta del periodo 2020-2023, se aplicó modelos de Machine Learning, en cinco tipos de muebles de sala. Los modelos de predicción que se emplearon fueron Regresión Lineal, CatBoost, XGBoost y LightGBM. Los resultados fueron evaluados comparando métricas como el Factor de determinación, Error Cuadrático Medio y Raíz del Error Cuadrático Medio, se analizó cómo el modelo se ajusta a los datos de entrenamiento con sus posibles limitaciones. Los experimentos realizados mostraron que los modelos LightGBM y XGBoost tuvieron mejores resultados con una ligera superioridad en comparación a los otros modelos, lo cual se vio reflejado en todos los modelos de muebles analizados, al final se obtuvo la predicción de muebles a vender para los meses de diciembre del 2023, enero del 2024 y febrero del 2024.Ítem Restringido Predicción de la demanda empleando técnicas de machine learning en una empresa industrial de películas plásticas(Universidad ESAN, 2023) Pacheco Prieto, Alexandra Gabriela; Pari Cruz, Milagros Margaret; Rojas Caro, Lady LeslieLa empresa en estudio se dedica a la producción y comercialización de láminas para empaques flexibles. Actualmente, la industria de productos plásticos ha venido mostrando un gran potencial y dinamismo con un crecimiento en los últimos años. Por ello, se ha propuesto predecir de manera exacta la demanda aplicando herramientas de Machine Learning, y así producir la cantidad correcta para atender a sus clientes y generar el stock necesario. En la investigación se aplicó una metodología cuantitativa con un diseño experimental y alcance correlacional, siendo la variable dependiente a predecir la demanda de productos. Se realizó una comparativa de cuatro algoritmos: regresión lineal, árboles de decisión, ARIMA y vectores de soporte de regresión para determinar el algoritmo adecuado a seguir. Finalmente, analizando las métricas de error de los modelos, el algoritmo de Regresión Lineal resultó con un R2 de 0.98 que indica su mayor ajuste al comportamiento de la demanda. Este dato nos permitirá tomar decisiones inmediatas con respecto al abastecimiento de materia prima, una programación correcta de producción y determinar el stock en inventarios que permitan responder rápidamente a la demanda cambiante.Ítem Acceso Abierto Técnicas de Machine Learning para incrementar el rendimiento de los campos de caña de azúcar en una empresa agroindustrial(Universidad ESAN, 2023) Alcantara Bernal, Francisco Fernando; Mckitting Cornejo, Gerardo Gabriel; Siancas Gutierrez, Susan Aracelly; Zaldívar Valdez, Ana SofíaEl rápido crecimiento demográfico genera una presión importante sobre la agricultura mundial debido al aumento de la demanda y la reducción de espacios aptos para el cultivo. Esto obliga a que las empresas agroindustriales tengan que obtener mejores rendimientos de cada campo para mantener o aumentar sus niveles de producción. La presente investigación busca complementar los estudios sobre la relación de las variables que afectan el rendimiento de los campos de cultivo de caña de azúcar. El objetivo de este estudio es predecir el porcentaje de sacarosa a obtenerse de un campo de caña de azúcar; para ello, se usaron dos técnicas de aprendizaje supervisado: regresión lineal y regresión vectorial de soporte (SVR), ejecutándose cada una tanto con data normalizada como sin normalizar. Finalmente, se compararon los resultados de cada modelo usando el coeficiente de determinación y raíz del error cuadrático medio. El modelo seleccionado fue el de SVR con kernel RBF y data normalizada, teniendo una precisión del 38.3% y un RMSE de 0.7962 puntos de sacarosa. El potencial que supone el uso de Machine Learning en el sector agroindustrial es muy grande y por ello se deben de seguir desarrollando investigaciones con nuevas variables, técnicas y modelos.Ítem Restringido Mejora en el proceso de planificación de la demanda en la empresa de consumo masivo ALICORP utilizando técnicas de Machine Learning(Universidad ESAN, 2023) Gutierrez Macedo, Allison Giomara; Prada Quintana, Christian; Quispe Melgarejo, Ursi Nicole; Quispe Rodriguez, Carmen MelizaEn el mundo globalizado en el que vivimos, es importante que las empresas utilicen herramientas avanzadas como el Machine Learning para mantenerse a la vanguardia y satisfacer las exigencias de sus clientes. La presente investigación se centra en la aplicación de técnicas de Machine Learning en la empresa ALICORP. La naturaleza cambiante y exigente del rubro, obliga a las organizaciones a buscar cómo satisfacer la demanda. Las técnicas de machine learning son utilizadas para proyectar la demanda y controlar los inventarios de manera eficiente. Para determinar la técnica más adecuada para proyección de datos se compararon tres técnicas: Regresión Lineal Múltiple, Árbol de Decisión de Regresión y Vectores de Soporte de Regresión. Luego se compararon métricas como RMSE y R2, se concluyó que la técnica de Árbol de Decisión de Regresión es la mejor opción ya que nos brindó RMSE de 12 y R2 de 0.95. La aplicación de esta técnica es crucial porque permite proyectar la demanda con mayor precisión, teniendo mejor control sobre sus inventarios, lo que se traduce en mayor rentabilidad. Usar Machine Learning en la proyección es una herramienta poderosa y, en particular, la técnica de Árbol de Decisión de Regresión ha demostrado ser altamente efectiva.