Trabajos de suficiencia profesional
URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3726
Examinar
2 resultados
Resultados de la búsqueda
Ítem Acceso Abierto Aplicación de modelos de Machine Learning para la planificación de la demanda en la empresa CBC Peruana S.A.C(Universidad ESAN, 2023) Maciel Carpio, Zannie Xilena; Salas Barrera, Felipe Alvaro; Sanchez Anticona, Crishtian Sebastian; Sanchez Chacon, Gabriela de los Angeles; Santana Fernandez, Jose DanielLa industria de bebidas enfrenta desafíos específicos en la planificación de la demanda, ya que la variabilidad de los patrones de consumo y la imprevisibilidad del cliente exige a las empresas establecer estrategias para satisfacer la demanda. El presente trabajo de investigación se centra en la aplicación de técnicas de Machine Learning para pronosticar la demanda de dos productos clave de la empresa CBC Peruana S.A.C: paquetes de gaseosa Concordia de Piña de 03 litros de 04 unidades y paquetes de gaseosa Evervess Ginger de 1,5 litros de 06 unidades. Para ello, se utilizaron modelos de Regresión lineal, LightGBM Regressor y series de tiempo, como SARIMA y FB Prophet, aplicando los enfoques de Forecasting y Regresión. La evaluación de modelos se realizó utilizando métricas como MAE, MAPE y RMSE. Entre los resultados obtenidos, se obtuvo que el modelo FB Prophet registra un MAPE promedio de 24.64, MAE promedio de 685.16 y un RMSE promedio de 1003.90. Este estudio proporciona una base sólida para futuras investigaciones en la aplicación de Machine Learning en la industria de bebidas y demuestra el potencial de estas tecnologías para transformar las operaciones comerciales y mejorar la competitividad en el mercado.Ítem Acceso Abierto Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning(Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria RosaliaDiversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).