Trabajos de suficiencia profesional
URI permanente para esta comunidadhttps://hdl.handle.net/20.500.12640/3726
Examinar
4 resultados
Resultados de la búsqueda
Ítem Restringido Desarrollo de un modelo de RFM y técnicas de clustering para la segmentación de clientes en una empresa de bienes de consumo masivo(Universidad ESAN, 2024) Toledo Rios, Julynho Merlin; Delgado Lorino, Alonso; Bazan Arzapalo, Jean Pablo; Garcia Quispe, Guerel Orlando; Canorio Ochoa, Diego AntonioLa implementación de modelos de clustering para la segmentación de clientes en empresas de bienes de consumo masivo es una estrategia fundamental en la comprensión del comportamiento del consumidor y en la mejora de las relaciones con estos. Esta investigación aborda la aplicación de un modelo de RFM y técnicas de clustering, en una empresa peruana líder en el sector de bienes de consumo masivo. El objetivo principal es reconocer los patrones de compra y la clasificación de clientes en grupos homogéneos basándose en variables clave como recencia, frecuencia y valor monetario de las compras. Utilizando métodos de aprendizaje automático no supervisado, como k-means, BIRCH y Gaussian Mixture Model, se procesan y analizan grandes volúmenes de datos para lograr una segmentación efectiva. Esta segmentación permitiría a la empresa dirigir sus esfuerzos de marketing de manera más precisa y desarrollar estrategias personalizadas para cada grupo de clientes. Los resultados obtenidos revelan patrones de compra significativos y sugieren que una segmentación cuidadosa puede proporcionar información valiosa para la formulación de decisiones estratégicas, contribuyendo al crecimiento y competitividad de la empresa en el mercado de bienes de consumo masivo.Ítem Acceso Abierto Influencia de la responsabilidad social corporativa y la actitud de marca en la intención de compra de marcas de fast fashion en personas de la generación Y de la zona 7 de Lima Metropolitana(Universidad ESAN, 2024) Cuentas Perez, Ruth Alicia; Manrique Huarhua, Maria Elisa; Morales Lozano, Maria Fernanda; Tafur Barreto, Juan Pablo; Ramirez Untiveros, RodrigoLa Responsabilidad Social Corporativa ha cobrado una relevancia fundamental y representa uno de los retos más cruciales que las organizaciones deben abordar para perdurar en el mercado, por lo cual se constituye como una de las soluciones para los actuales desafíos sociales. Por lo que se plantea como propósito el determinar la influencia de la Responsabilidad Social Corporativa y la Actitud de Marca en la Intención de Compra de marcas de Fast Fashion en personas de la generación Y de la zona 7 de Lima Metropolitana. Se trabajará con un enfoque cuantitativo y de alcance explicativo. Para recabar los datos se aplicará un cuestionario online a 384 individuos que hayan efectuado compras recientemente y estén familiarizadas con la tienda H&M. Para el análisis de datos se usará el SPSS y Smart PLS el cual este último es un método estadístico empleado en el modelado de ecuaciones estructurales (SEM) para examinar las relaciones entre variables. El aporte será contribuir a los vacíos existentes respecto a investigaciones nacionales que aborden las variables. Además de sugerir importantes implicaciones para las tiendas de Fast Fashion a la hora de gestionar sus marcas.Ítem Restringido Modelo de Machine Learning para la segmentación automática de clientes según su perfil de compra del canal de venta interna en Molitalia(Universidad ESAN, 2021) Bernuy Murriel, Astrid Carolina; Manza Briceño, Mirella Maribel; Garay Macukachi, Jessica Diyanira; Guillen Aguilar, Yomira Alizon; Juarez Polar, Jefry RomuloDebido al COVID-19, la empresa Molitalia redujo sus ventas en los canales internos y externos, esto se debe a que los consumidores han reducido su poder de compra en las categorías de alimentos; por lo cual, Molitalia se ve obligada a mapear soluciones y estrategias que se adapten al nuevo entorno. Siendo uno de los hallazgos la poca capacidad de respuesta a las exigencias y preferencias de los clientes internos. Por ello, este proyecto se centró en el desarrollo de un modelo de segmentación automática de perfiles de compra de los clientes internos, con ello se podrá implementar estrategias que se adapten a las necesidades de los clientes, responder rápidamente a los cambios en la demanda, contar con información a tiempo real del perfil de compra del cliente, agilizar y fortalecer los procesos de venta para beneficio de la organización.Para ello, se desarrollaron diez modelos de Machine Learning usando la técnica de aprendizaje no supervisado “K-Means”. Además, se analizaron y evaluaron los modelos mediante dos validaciones: teórica, mediante el indicador “inercia”; y práctica, por medio del experto de estrategia comercial. Concluyendo que el mejor modelo es el K=4, logrando descubrir cuatro perfiles de clientes internos: Beginners, Middle, Expert, Senior.Ítem Acceso Abierto Técnica de Machine Learning para el cálculo de la probabilidad de fuga de los clientes de la empresa Bitel(Universidad ESAN, 2021) Bernachea Collazos, Carla Benedicta; Chilet Paisig, Edward; Guzmán Fernández, Paola; Inche Contreras, Victor Hugo; Leon Munive, Johana MayraSegún datos del Banco Mundial, la industria de las telecomunicaciones enfrenta cada año a una fuga de clientes que bordea el 30%. Estudios recientes han mostrado que tanto atributos cuantitativos: cantidad de minutos, mensajes, etc.; así como los cualitativos: edad, sexo, tipo de dispositivo tienen influencia en la fuga de clientes. En base a la literatura encontrada se definieron dos tipos de variables: demográficas y del comportamiento del consumidor las cuales son útiles para realizar la predicción de permanencia del cliente. Es por eso que haciendo uso de la técnica de regresión logística, se busca predecir la probabilidad de fuga de los clientes (Churn) de la empresa Bitel. Se realizó un exhaustivo trabajo de preprocesamiento y se llegó a entrenar un modelo de regresión logística con un accuracy score de 88%