Ingeniería en Gestión Ambiental

URI permanente para esta colecciónhttps://hdl.handle.net/20.500.12640/3738

Examinar

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Miniatura
    ÍtemAcceso Abierto
    Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
    (Universidad ESAN, 2024) Aguirre Vasquez, Mayra Araceli; Churampi Coronado, Heidy Denis Ana; Garcia Garcia, Jeff Steven; Mamani Ventura, Danny Alvis; Montes Manrique, Diego Alfredo
    Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
  • Miniatura
    ÍtemAcceso Abierto
    Pronóstico de la producción de papa en la cuenca Jequetepeque - Cajamarca en base a las variables meteorológicas utilizando técnicas de Machine Learning
    (Universidad ESAN, 2023) Diaz Hurtado, Eddy Emerson; Fustamante Campos, Danly Maryoy; Gave Cardenas, Joshua; Heredia Menor, Keico Anavela; Sedano Ruiz, Maria Rosalia
    Diversos estudios utilizan técnicas de Machine Learning para analizar datos, buscar comportamientos y patrones, con la finalidad de construir modelos matemáticos predictivos y pronosticar diferentes variables de salida. Este estudio se centra en usar técnicas de aprendizaje supervisado para predecir la producción de papa en la cuenca Jequetepeque, teniendo a la Dirección Regional de Agricultura de Cajamarca (DRAC) como parte interesada. Se usó la metodología CRISP-DM por ser el método más adecuado para el despliegue del proyecto. Las fuentes de datos usadas para la recolección de la información fueron el SENAMHI, POWER NASA, BCRP y el INEI, utilizando datos meteorológicos y de producción de papa desde 1981 al 2022. Los modelos que se utilizaron fueron Regresión Lineal, SVR, Árbol de Decisión para Regresión y ARIMA. Además, se emplearon métricas estadísticas como el MAE, MSE, RMSE y R^2 para definir el mejor rendimiento del modelo, el cual resultó ser el SVR, que alcanzó un MAE de 0.2377799, un MSE de 0.1618759, un RMSE de 0.4023380 y un R^2 de 0.8356449. Se concluye que se logró el objetivo propuesto logrando modelar un algoritmo de Machine Learning que permite predecir la producción de la papa con un error mínimo (RMSE de 0.402337).
  • Miniatura
    ÍtemAcceso Abierto
    Implementación de técnicas de Machine Learning para la segmentación de clientes en una empresa del sector farmacéutico
    (Universidad ESAN, 2023) Inga Llacza, Fabricio Gustavo; Miranda Manrique, Kevin Miguel Angel; Quispe Zuñiga, Dennys; Reyna Torres, July Mabel; Turriate Naveda, Santiago
    La presente tesis se enfocó en la investigación e implementación de técnicas de Machine Learning para una empresa del sector farmacéutico, utilizando un conjunto de datos con más de 30 mil transacciones comerciales del período de junio a agosto de 2023. Esta investigación abarcó la recopilación, procesamiento, modelado y evaluación de los datos proporcionados por la empresa, para lo cual se emplearon técnicas de aprendizaje no supervisado como el modelo K-Means y Jerárquico, lo que llevó a la exitosa identificación de cuatro segmentos distintos de clientes. Estos hallazgos resaltan la efectividad de Machine Learning en la segmentación de clientes, lo que permitió poder identificar grupos con similitudes en sus características y patrones de comportamientos. Asimismo, se llevaron a cabo evaluaciones comparativas entre diferentes técnicas para determinar cuál se adaptaba mejor a las necesidades de la empresa. Tras un análisis detallado, se concluyó que el modelo K-Means era el más adecuado en este contexto, debido a que las agrupaciones se ajustaban más a la realidad del negocio. En consecuencia, se formularon estrategias personalizadas para aumentar la retención y satisfacción del cliente, con lo cual se tendrá mayor certeza en la toma de decisiones estratégicas y análisis de datos comerciales.
  • Miniatura
    ÍtemAcceso Abierto
    Técnicas de Machine Learning para la predicción del caudal efluente de la represa Condoroma
    (Universidad ESAN, 2023) Encina Dávila, Astrid Floria Milagritos; Pacheco Hinojoza, Mirella Alejandra; Vargas Martell, Vannia Giovana
    Distintos estudios están empleando técnicas de Machine Learning para el análisis de datos para hallar comportamientos que posibiliten crear modelos matemáticos predictivos y pronosticar diversas variables de salida. En este sentido, el presente trabajo de investigación se enfoca en los esfuerzos realizados para predecir el caudal efluente en la represa Condoroma, perteneciente a la Autoridad Autónoma de Majes (Autodema), donde se incluye el uso de técnicas de aprendizaje supervisado. Para ello, se utiliza una base de datos abiertos de dos plataformas de Autodema: Movimiento Hídrico Sistema Colca y Meteorología Represas. Estos datos históricos son resultados de mediciones mensuales del sistema de monitoreo del recurso hídrico. Además, se manejan para entrenar los modelos Regresión Lineal, Regresión de Vectores de Soporte (SVR) y ARIMA; asimismo, se utilizaron métricas como el MAE, MSE, RMSE y varianza para medir el modelo con el mejor rendimiento. Con base en los resultados obtenidos, se determinó que para predecir el caudal efluente de la represa Condoroma la mejor técnica fue la de SVR que obtuvo un MAE de 5.536, un MSE de 83.701, un RMSE de 9.145 y una varianza igual a 0.427.
  • Miniatura
    ÍtemAcceso Abierto
    Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la experiencia de compra mediante un sistema de recomendación de productos de Tottus
    (Universidad ESAN, 2022) Atencio Manyari, Stefany Anyela; De la Rosa Flores, Harold; Hilario Maravi, Sayuri; Navarro Huarcaya, Margareth; Rosas Vivanco, Dianaluz Milagros
    Actualmente, el constante cambio en los factores externos como la tecnología, el mercado, y ahora la pandemia global están obligando a las empresas del sector retail a buscar diferentes estrategias de venta para mejorar la experiencia de compra de sus clientes y así obtener mejores beneficios. Por ello, este trabajo busca segmentar a los clientes a través de la aplicación de técnicas de Machine Learning para crear un sistema de recomendación de productos personalizados de acuerdo con las características a la cual pertenece cada cliente y así mejorar la experiencia de compra agilizando y facilitando el proceso desde el aplicativo móvil de la empresa. La propuesta de segmentación se realizó aplicando para el preprocesamiento de los datos el método estadístico de PCA y se modeló mediante tres técnicas de aprendizaje no supervisado: K-means, K-medoids y Clustering Jerárquico. Estas técnicas se evaluaron de forma teórica considerando el método del codo y el dendograma los cuales resultaron en K grupos óptimos. Finalmente, para validarlo de forma práctica, se solicitó la evaluación de un experto de la empresa quien mediante una entrevista comparó los resultados de las técnicas y escogió a K-medoids como la segmentación más adecuada para el negocio.
  • Miniatura
    ÍtemAcceso Abierto
    Mejora del proceso de disposición de productos observados en el área de Aseguramiento de Calidad de una empresa PET usando técnicas de machine learning
    (Universidad ESAN, 2022) Ore Vargas, Jorge Humberto; Pinedo Chávez, Luis Alonso; Ramírez Núñez, Karen Andrea; Sullón Cabello, Claudia Noelia; Villanueva Méndez, Martín Jesús
    La industria de empaques rígidos es un sector altamente competitivo en temas de calidad y precio en el Perú y el mundo. Es por ello, que se requiere que las empresas optimicen el uso de sus recursos para poder ofrecer lo que el mercado demanda. El presente trabajo plantea mejorar el proceso de disposición de productos observados en el área de Aseguramiento de Calidad a través de un modelo predictivo, resultante de la aplicación de técnicas de machine learning y así disminuir los tiempos que actualmente se emplean en este proceso. Estas técnicas son K-NN (k-Nearest Neighbors), Máquinas de soporte vectorial (SVM), Naive Bayes y Árbol de decisiones. Para su entrenamiento se usó data histórica de los años 2021 y 2022 la cual fue tratada y definida en conjunto con los especialistas. Como resultado de la evaluación del Accuracy de cada modelo, se pudo concluir que el más preciso es el Árbol de decisiones, la cual podrá ser aplicada a futuro en la empresa para contribuir con la mejora del proceso.